农业面临着受侵蚀,盐度和土壤降解影响的重大挑战。化学农药和杀菌剂更多地用于农业土地。化学农药和杀菌剂是更多使用的环境和人类疾病原因。在农业,生物防治微生物和植物生长促进(PGP)方面的更好方法已经对环境安全,也是化学农药的安全替代品。植物相关的微生物有助于土壤养分增强,氮固定,磷酸盐溶解化,铁载体产生,β-1,3gulucanase,纤维素酶,蛋白酶,蛋白酶和脂肪酶。这些微生物对生物和非生物胁迫,pH,盐度干旱,极端温度,重金属和农药污染具有公差。这篇综述中总结了这一总结和讨论,评估了放线菌相关的研究及其益处。这些细菌是植物病原体的生物控制,并增强了农业的植物生长。
在本研究中,研究人员从渤海河口沉积物中开发出一种富集培养物,发现菌株W不仅能在高盐度条件下(5.1%NaCl)生存,而且能够茁壮成长,将有毒的1,2-二氯乙烷分解成无害的乙烯。
[压力生理学:在田间和体外条件下都对非生物压力的生理学领域做出了显着贡献 - 全球问题(热,干旱,盐度,盐度,重金属,重金属,重金属,供水),以及通过使用诸如水杨酸,水甲酸,多胺,多胺,氮气和PGPM的水平,以及诸如水小酸的研究(诸如水小酸)中来减轻这些压力的效应,这些应力效果 - 生理,生化和分子水平 - 在全球气候变化时代,这项工作在农业部门至关重要,赋予植物耐受性耐心的次要代谢产物的产量更高。Commercially Important Medicinal plant's conservation, phytochemistry and pharmacognosy: Successfully evolved micropropagation protocols of some important and endangered medicinal plants ( Rubia, cordifolia, Oroxylum indicum, Elaeocarpus sphaericus, Tylophora asthmatica, and anti- diabetic plants Gymnema sylvestre and Stevia rebaudiana ) as well as commercially important兰花
由于地形驱动的动力学在(次)公里(例如Bora风)和复杂的海洋测深的测定法上引起的,其中包括许多通道,凹陷和山脊,在半封闭的Adriatic区域内的大气 - 海洋动力学在可用的环境区域模型中无法很好地复制。因此,特定开发了亚得里亚海和海岸(Adrisc)公里大气层模型,以准确评估历史(1987-2017)和远处(2070-2100)条件下的亚得里亚海气候危害。在这项研究中,我们分析了气候变化对预计的亚得利亚趋势,可变性和极端事件的影响。在大气中,我们的结果主要遵循已经发表的文献:强烈的土地对比,干旱增加和极端的降雨事件以及沿海地区的风速下降。在海洋中,表面和中等温度的强度和恒定升高与盐度降低有关,除非夏季盐度在沿海地区上升的表面。在底部和海洋循环中,我们的结果表现出强烈的对比。在沿海地区,底温度上升,底部盐度的速度降低了,而当前速度的变化可以忽略不计。在亚得里亚海最深的部分,负底温度趋势会导致比表面慢2.5°C慢,而底部盐度增加。此外,洋流在表面和中间层中加速,但在底部减速。这些海洋的结果表明,北部亚得里亚海中茂密的水的形成减少,南部亚得里亚海气旋回旋的强化和收缩,以及在代码深处的最深部分的垂直地层加强可能与亚种式水水和亚法利亚水平的变化相关的垂直地层。鉴于这些变化对亚得里亚海沿海社区和海洋生物的潜在影响,这项研究强调了增加亚得里亚海地区正在进行的千年规模建模工作,旨在实施政策和适应计划,以更好地针对该规范区域预测的当地气候变化量身定制。鉴于这些变化对亚得里亚海沿海社区和海洋生物的潜在影响,这项研究强调了增加亚得里亚海地区正在进行的千年规模建模工作,旨在实施政策和适应计划,以更好地针对该规范区域预测的当地气候变化量身定制。
由于气候变化和富营养化,主要有毒的淡水蓝细菌的花朵正在加剧,并且很可能会定居河口,从而影响底栖生物和养殖养殖,重强调主要的生态,健康,健康,健康和经济风险。在自然环境中,微囊藻形成大型粘液菌落,会影响蓝细菌和嵌入细菌洞穴的发展。然而,盐度增加对微囊藻的天然菌落的命运知之甚少。在这项研究中,我们监测了一个微囊藻的命运,沿法国淡水盐梯度沿着鲜花的不同阶段沿着法国淡水盐梯度沿着微生物组的命运。我们证明了蓝细菌基因型组成的变化,在特定代谢产物(毒素和兼容溶质)的产生中以及响应盐度升高的异育细菌结构的变化。尤其是M.铜绿和Wesenbergii M.基于微囊蛋白基因丰度,蓝细菌在其河口转移期间变得更具毒性,但没有选择特定的微囊蛋白变体。沿连续体发生了兼容溶质的增加,海藻糖和甜菜碱积累。盐度大多是异养细菌群落,沿着连续体的丰富性和多样性增加。与粘液相关的相关分数中的核心微生物组高度丰富,表明微囊肿及其微生物组之间存在很强的相互作用,并且可能保护粘膜对渗透冲击的作用。这些结果强调了更好地确定微囊菌落与它们的微生物组之间的相互作用,这可能是其广泛成功并适应各种环境条件的关键。
全球农业生产受到迅速增加的人口和不利气候变化的严重威胁。目前,粮食安全是到2050年喂养100亿人的巨大挑战。通过常规方法驯化作物不足以满足食物需求,并且无法快速追踪作物的产量。此外,强化繁殖和严格选择上等特征会导致遗传侵蚀并消除应激响应基因,从而使作物更容易出现非生物胁迫。盐胁迫是最普遍的非生物胁迫之一,它在全球范围内造成严重的作物损害。最新的基因组学和转录组学技术的最新创新已经为发展盐度耐受作物铺平了道路。从头驯化是通过利用作物野生亲戚(CWRS)的遗传多样性来产生新作物基因型的有前途策略之一。下一代测序(NGS)技术开辟了新的途径,从CWRS中识别出独特的耐盐基因。这也导致了高度注释的作物泛基因组的组装,以捕捉遗传多样性的完整景观,并重新夺回了物种的巨大基因库。鉴定新基因以及针对靶向操作的尖端基因组编辑工具的出现,从头驯化了一种发展耐盐作物的方向。但是,与基因编辑的作物相关的一些风险造成了全球采用的障碍。盐植物主导的盐度耐受性繁殖提供了一种替代策略,以识别可用于开发新作物以减轻盐度胁迫的极其耐盐品种。
他还谈到了核应用在帮助各国适应已经显现的气候变化后果方面的作用。“我们的科学家帮助各国开发耐旱、耐极端温度和耐盐度的新型水稻和大麦品种,”他说。“我们支持使用核技术来识别和管理有限的水资源。”
最近的北极海冰迅速丧失激励了对北极海冰厚度的研究。描述冰厚性演化的全球气候模型需要北极海冰的准确空间温度曲线。但是,在整个北极ICECAP中测量完整温度曲线是不可行的。相反,通过从海底和卫星设备中获取数据可用来测量冰厚度。在本文中,我们开发了一种反向替代的观察者算法,以通过可用的海冰厚度和海冰表面温度来估算北极海冰模型的温度曲线。观察者以严格的方式设计,以将无盐度海冰模型的温度剖面估计误差提高到零。此外,提出的观察者用于通过数值模拟估算具有盐度原始海冰模型的温度曲线。模拟结果表明,我们的观察者设计在三天内成功地估计了海冰温度剖面,这比直接的开环算法快十倍。©2019 Elsevier Ltd.保留所有权利。
摘要 - 用于各种应用程序的自动化系统已被证明可以有效地达到生产力和效率。此外,它可用于监测生物培养的生长参数。微藻一直是食品,化妆品,药物和燃料的潜在来源。然而,监测微藻的生长参数,例如pH水平,盐度,溶解氧及其颜色密度随着时间的流逝尚未实现。本文介绍了一个封闭的微藻光生反应器的自动监测系统。考虑到对微藻的生长至关重要的参数,例如pH和溶解的氧气至关重要。溶解的氧,pH和盐度传感器已安装在系统上,并使用LabView进行编程,以定期进行测量。设置包括一个视觉系统,以监视溶液颜色的变化,对应于微藻细胞的种群生长。光密度读数以表征微藻生物的生长,以作为实验结果的基准。系统是
摘要:太阳池是一种人工池塘,由于防止对流,其底部温度明显升高。池塘中使用盐水来防止对流。这些池塘被称为“盐梯度太阳池”。在过去的 15 年里,许多国家都建造了许多大小不一的盐梯度太阳池,面积从数百到数千平方米不等。如今,还建造了微型太阳能凉亭用于不同的热应用。本项目工作建立了一个具有更好绝缘性、透明顶盖和改进的吸收涂层的太阳池系统。在不同水平测量了池塘的温度,并与其他工作进行了比较。在这项工作中,观察了不同盐度水平下的太阳池性能。可以看出,储存区发生的最高温度随着盐度的增加而增加。池塘也用作储存。这是因为储存区的温度在一天结束时达到最大值,太阳强度各不相同。因此,太阳池也适用于漫射辐射。当前系统的性能优于以前的工作。存储区产生的最高温度高于之前研究的最高温度。这表明系统的传热性能优异