随着世界面临气候变化日益严重的威胁,开发可再生能源技术并降低其成本的重要性也日益增加。海洋能源技术(包括波浪、潮汐、洋流、海洋热能和盐度梯度资源)是一套新兴的可再生技术。世界各地和美国领海内都有丰富的海洋能源资源,随着技术的不断发展,成本降低和性能改进的长期轨迹尤其令人关注。这项研究专门调查了商业波浪能技术的长期成本降低潜力,因为波浪能是美国大陆最大的海洋能源资源。未来可能会有针对其他资源和技术的类似研究。
鱼具有i。减少或没有肾脏以将尿素保留在其体内以应对高盐度,例如鲨鱼,狗鱼等软骨鱼等。II。 盐分或眼睛中分泌腺体以维持渗透调节(盐平衡),例如 骨鱼类等骨鱼类,鲱鱼等。 iii。 管脚,使它们能够抓住岩石海岸和硬壳,以防止干燥,例如 海星,鲸鱼。II。盐分或眼睛中分泌腺体以维持渗透调节(盐平衡),例如骨鱼类等骨鱼类,鲱鱼等。iii。管脚,使它们能够抓住岩石海岸和硬壳,以防止干燥,例如海星,鲸鱼。
在表面上的聚合细胞外基质可以抑制抗生素的渗透,从而使其比浮游细胞更具耐药性[1-3]。除了修改现有药物外,研究人员还通过探索海洋生物来寻找新的抗生素。由于海洋占地约70%,因此与陆生物相比,海洋环境具有更大的生物多样性,并且含有非常有希望的生物活性化合物可以探索。海洋生物的寿命取决于其周围环境条件,例如温度,光,盐度,压力和栖息地的深度。它们具有不同的进化系统,代谢途径和生态学[4,5],这会导致独特的化学组成,复杂性和生物学功效[6,7]。
1989年,我被任命为日本Riken Tsukuba Life Center的植物分子生物学实验室的首席科学家(PI),以使用拟南芥作为模型植物开始对植物环境反应进行分子分析。 Kazuko和我决定开始新的项目,以了解植物对复杂的非生物压力的反应的分子基础,尤其是干旱,冷,盐度和热量。 我们试图通过各种功能隔离许多诱导干旱的ible基因(命名为RD和ERD),并分析非生物应力反应中基因表达的调节。 我们将工作重点放在对非生物应力反应及其相关信号网络的转换调节上。 我们发现了许多参与植物对干旱,冷和热的植物反应,并分析了非生物应力反应中的基因表达和信号转导。 我们首次展示了植物对干旱胁迫的反应中独立于ABA的调节系统,除了ABA依赖性的压力外。 我们1989年,我被任命为日本Riken Tsukuba Life Center的植物分子生物学实验室的首席科学家(PI),以使用拟南芥作为模型植物开始对植物环境反应进行分子分析。Kazuko和我决定开始新的项目,以了解植物对复杂的非生物压力的反应的分子基础,尤其是干旱,冷,盐度和热量。 我们试图通过各种功能隔离许多诱导干旱的ible基因(命名为RD和ERD),并分析非生物应力反应中基因表达的调节。 我们将工作重点放在对非生物应力反应及其相关信号网络的转换调节上。 我们发现了许多参与植物对干旱,冷和热的植物反应,并分析了非生物应力反应中的基因表达和信号转导。 我们首次展示了植物对干旱胁迫的反应中独立于ABA的调节系统,除了ABA依赖性的压力外。 我们Kazuko和我决定开始新的项目,以了解植物对复杂的非生物压力的反应的分子基础,尤其是干旱,冷,盐度和热量。我们试图通过各种功能隔离许多诱导干旱的ible基因(命名为RD和ERD),并分析非生物应力反应中基因表达的调节。我们将工作重点放在对非生物应力反应及其相关信号网络的转换调节上。我们发现了许多参与植物对干旱,冷和热的植物反应,并分析了非生物应力反应中的基因表达和信号转导。我们首次展示了植物对干旱胁迫的反应中独立于ABA的调节系统,除了ABA依赖性的压力外。我们
波罗的海是世界上最大的咸水区之一。,它通过Kattegat和Skagerrak从北海收到咸水,以及200多条河流的淡水。海洋显示出强温度和盐度梯度,从西南部分相对温暖和盐水到最北端的寒冷和几乎淡水条件。此外,海洋的特征是较浅的深度,没有潮汐及其相对孤立的位置。其多样化的特征意味着波罗的海为相对较少的物种提供了特定的栖息地,显示了相对较高的物种。大约100种鱼类居住在波罗的海,其中约70种海洋物种主导波罗的海或主要盆地,而大约30种淡水物种出现在沿海和最内向地区。
中尺度涡旋对海洋温度和盐度结构产生重大影响,从而改变生态环境和声传播特性。先前对中尺度涡旋效应下声传播的研究主要集中于碎片化的、快照式的分析。而本研究采用整体的方法,通过整合多源数据来阐明海洋温度和盐度结构,最终影响它们的生态环境和声传播。与现有论文相比,本研究采用了更全面、更连续的方法。通过融合多源数据,本研究引入了一种创新的中尺度涡旋跟踪算法和增强的高斯涡旋模型。利用BELLHOP射线理论模型,本研究研究了西北太平洋一个气旋涡旋和一个表现出完整生命周期的典型反气旋涡旋(CE-AE)对的声场特征。结果表明,中尺度涡旋的整个生命周期对声场环境产生显著的影响。随着CE的增强,汇聚区(CZ)距离减小,CZ宽度扩大,直达波(DW)距离缩短。相反,增强的AE会使CZ距离增加,CZ宽度收缩,DW距离延长。本文定量分析了影响涡旋生命周期的关键因素,结果表明涡旋强度和变形参数都显著影响声传播特性,其中涡旋强度的影响更大。本研究对海面测高数据在水下声学研究中的应用具有重要的贡献,并对典型中尺度涡旋环境中涡旋参数对水下声传播的影响提供了初步认识。此外,这项研究为未来研究海洋系统中涡流动力学和声传播之间的复杂关系奠定了基础。
叶绿素:叶绿素是一种光合色素,存在于几乎所有植物和浮游植物中。通过测量水样中叶绿素“a”的含量,可以确定水中的藻类数量。与叶绿素 a 一起测量的其他光合色素还有叶绿素 b、叶绿素 c 和胡萝卜素。它们的颜色各不相同,在植物和浮游植物物种中的含量也不同。云量:云量测量是在现场近似的,记录范围从零云量(无云)到 100% 云量(完全阴天)。云量会影响叶绿素的产生、塞氏深度测量和气温。颜色:颜色是采样水的色调,通过主观测试确定,该测试涉及将样品与已知浓度的有色溶液进行比较。天然金属离子(铁和锰)、腐殖质和泥炭物质、浮游生物、单宁和工业废物会影响水体的颜色。浊度也会影响颜色。溶解氧:溶解氧 (DO) 是水中的气态氧 (O 2 )。水吸收氧气的速率取决于温度、盐度、大气压和风速。低温、低盐度和低海拔是吸收更多氧气的理想因素。在不存在氧气或鱼类种群、细菌含量高甚至存在污染的泉水中,溶解氧可能接近 0 mg/L,而在风引起的高通量曝气以及光合作用过程中水生植物产量高(如藻类大量繁殖)的情况下,溶解氧可能高达 15 mg/L。溶解氧可以间接表示水体的质量。肠球菌:肠球菌是一种指示生物,其存在决定了水质的恶化。肠球菌是粪便链球菌的一个亚群。肠球菌对各种温度和 pH 的抵抗力使其成为实验室水样分析的理想高效细菌。
全球人口和工业发展的增加导致有机和无机污染物的显着释放到水流中,威胁到人类健康和生态系统。微藻,包括真核生物和原核生物蓝细菌,已成为一种可持续且具有成本效益的解决方案,用于去除这些污染物并减轻碳排放。各种微藻物种,例如C. vulgaris,P。tricornutum,N。Oceanica,A。Platensis和C. reinhardtii,都证明了它们消除了重金属,盐度,塑料和农药的能力。合成生物学具有通过扩大治疗范围并提高污染物去除率来增强基于微藻的技术的潜力。本综述概述了微藻合成生物学的最新进展,重点是基因工程工具,以促进去除无机(重金属和盐度)以及有机(农药和塑料)化合物。这些工具的开发对于通过基因表达操纵,DNA引入细胞以及具有改变表型改变的突变体的产生来增强污染物的去除机制至关重要。此外,审查还讨论了合成生物学工具的原理,强调了基因工程在靶向特定代谢途径和创造表型变化时的重要性。它还探讨了CRISPR/CAS9和TALES等精确工程工具的使用,以使基因工程适应各种微藻物种。审查得出的结论是,基于合成生物学的方法有很大的潜力使用微藻去除污染物,但是需要扩展所涉及的工具,包括开发普遍的克隆工具包,以促进突变体的有效和快速组装突变体和转基因表达菌株,并需要适应遗传工具的遗传范围。
这项研究是引入一种新的方法来提高太阳能收集器的性能。太阳散发出足够的太阳辐射能力,以满足能量的需求。收获可再生太阳能需要高级技术和要求。太阳能池在内,包括盐度梯度太阳池(SGSP)是常见的太阳能收集器。这些池塘是用于许多工业和家庭用途的太阳能应用之一。然而,常规SGSP的挑战,例如蒸发,盐扩散,温度差异以及层混合,深刻地影响了其全球范围。研究了一种新型的实验太阳能收集器配置,以克服常规太阳能池塘(太阳能收集器)的挑战,没有水体,也没有盐度梯度可以建造;它完全是一个没有水体的收藏家。实验单元是在干旱地区构建的。基本上是一个圆柱罐,总深度为1.4 m,带有三个区域或层以储存热量,即石蜡蜡层(厚度为10 cm)。石蜡层被厚度为30厘米的煤覆盖。在煤层的顶部,厚度为80 cm的气隙。用厚度为0.2 cm的透明塑料盖用于覆盖构造的层并制成气隙。监测实验单元,并在17/7/2021-30/9/2021收集温度测量。在研究期间即使在夜间,石蜡层的温度也保持在43°C左右。结果表明,石蜡层的温度在短时间内达到48°C以上,白天和夜晚的差异(1°C)。此外,结果表明,煤层和气隙的温度分别达到53°C和71°C的最大值,白天和黑夜之间存在明显的差异。本研究的结果令人鼓舞,以在太阳能收集器的新方向上进行更多研究。
•Kul-在查mu和喜马al尔邦常见,这些是将水从冰川到村庄的转移渠道。•Virdas-由古吉拉特邦Kutch的Rann的游牧部落开发,这些是在自然抑郁症中挖出的浅井(例如Jheel)。 由于周围的区域是非常盐水,当雨水从土壤中渗出时,由于盐度的差异(雨水的密度较小),它会在盐水地下水上收集。 •在梅加拉亚邦实行的竹滴灌溉系统这种节水系统是使用竹管完成的。 整个灌溉系统由不同形式的不同形式的横截面的竹管组成,这些竹管从山顶的泉水中吸收了水。 水被滴在植物的底部,以防止浪费水。 •Johads-新月形形状的小型支票坝从地球和岩石上建造到拦截和保护雨水。 主要在拉贾斯坦邦的阿尔瓦尔地区发现,这有助于改善渗透并增加地下水充电。Jheel)。由于周围的区域是非常盐水,当雨水从土壤中渗出时,由于盐度的差异(雨水的密度较小),它会在盐水地下水上收集。•在梅加拉亚邦实行的竹滴灌溉系统这种节水系统是使用竹管完成的。整个灌溉系统由不同形式的不同形式的横截面的竹管组成,这些竹管从山顶的泉水中吸收了水。水被滴在植物的底部,以防止浪费水。•Johads-新月形形状的小型支票坝从地球和岩石上建造到拦截和保护雨水。主要在拉贾斯坦邦的阿尔瓦尔地区发现,这有助于改善渗透并增加地下水充电。