电能用于驱动由电化学电池组成的电解电池中的非自发氧化还原反应。经常使用通过电解分解化合物的过程,它源于希腊语 lysis,意思是分解。电解池由电解质、两个电极(一个阴极和一个阳极)和其他三个组件组成。通常使用水或其他溶剂来制作电解质,电解质是一种含有溶解离子的溶液。本研究的目的是使用各种电解液、盐水浓度以及燃料电池和电极的集成来测试、分析和构建电解电池。该研究旨在进行实验,并依靠描述性分析来对其进行评估。设计重点是寻找电极(仅限于锌、铜和铝(汽水罐)、不同电解质、燃料电池连接类型和不同浓度盐溶液)的最佳组合,以提供最佳能量输出。根据收集和分析的数据,锌铜电极每电池产生的平均电压为 0.705 V。盐水电解质根据其成本效益产生最有效的结果。当盐溶液浓度为 30% 时,可实现最佳电压输出,燃料电池在串联时性能最佳。使用此参数构建了 20 个燃料电池,可在没有任何负载的情况下产生 14.10 V。当连接到具有 12V 电源的直流照明负载时,电压为 7.57 V,电流为 1.1 A。关键词:电极、电解池、电解、氧化还原反应
Bernard Sanjuan Sanjuan,Blandine Gourcerol,Romain Millot,Detlev Rettenmaier,Elodie Je-Andel等。地热,2022,101,pp.102385。10.1016/j.geothermics.2022.102385。hal-03659768
锌金属电池 (ZnBs) 因其在水性电解质中的可操作性、Zn 含量丰富和可回收性而安全且可持续。然而,Zn 金属在水性电解质中的热力学不稳定性是其商业化的主要瓶颈。因此,Zn 沉积 (Zn 2 + → Zn(s)) 不断伴随着氢析出反应 (HER) (2H + → H 2 ) 和树枝状生长,进一步加剧了 HER。因此,Zn 电极周围的局部 pH 值增加并促进 Zn 上形成不活跃和/或导电性差的 Zn 钝化物质 (Zn + 2H 2 O → Zn(OH) 2 + H 2 )。这加剧了 Zn 和电解质的消耗并降低了 ZnB 的性能。为了推动 HER 超越其热力学电位(pH 0 时 0 V vs 标准氢电极 (SHE)),水包盐电解质 (WISE) 的概念已用于 ZnBs。自 2016 年发表第一篇关于 ZnB WISE 的文章以来,这一研究领域不断取得进展。本文概述并讨论了这一有希望加速 ZnBs 成熟的研究方向。本综述简要介绍了 ZnBs 中传统水性电解质的当前问题,包括 WISE 的历史概述和基本理解。此外,还详细介绍了 WISE 在 ZnBs 中的应用场景,并描述了各种关键机制(例如副反应、Zn 电沉积、金属氧化物或石墨中的阴离子或阳离子插入以及低温下的离子传输)。
基于与几个潜在的副业人士的真实讨论确定了用例,每个案例都有不同的潜在实现时间表。kpmg ag德国:这部分研究是由毕马威(KPMG)德国进行的,专注于德国和德国及以来的德国市场和运输。
项目合作伙伴和贡献者 BGR (Bundesanstalt für Geowissenschaften und Rohstoffe) Stilleweg 2 D-30655 德国汉诺威 Franz May、Robert Meyer、Peer Hoth、Paul Krull、Christian Müller。BGS(英国地质调查局)Kingsley Dunham Center Keyworth Nottinghamshire NG12 5GG 英国 Keith Bateman、Andy Chadwick、Dave Evans、Jon Harrington、Sam Holloway、Steve Horseman、Gary Kirby、Xiang-Yang Li、Enru Liu、Tony Milodowski、乔纳森·皮尔斯、西蒙·坎普、克里斯·罗谢尔、加雷斯·威廉姆斯、保罗·威廉森。BP 勘探运营有限公司 Chertsey Road Sunbury-on-Thames Middlesex TW16 7LN 英国 Shelagh Baines, John Williams。BRGM (Bureau de Recherches Géologiques et Minières) 3 Avenue Claude Guillemin BP 36009 45060 Orléans Cedex 2 France Pascal Audigane、Isabelle Czernichowski-Lauriol、Pierre Durst、Hubert Fabriol、Irina Gaus、Christophe Kervevan、Bernard Sanjuan。
项目合作伙伴和贡献者 BGR (Bundesanstalt für Geowissenschaften und Rohstoffe) Stilleweg 2 D-30655 Hannover 德国 Franz May、Robert Meyer、Peer Hoth、Paul Krull、Christian Müller。BGS(英国地质调查局)Kingsley Dunham Centre Keyworth Nottinghamshire NG12 5GG 英国 Keith Bateman、Andy Chadwick、Dave Evans、Jon Harrington、Sam Holloway、Steve Horseman、Gary Kirby、Xiang-Yang Li、Enru Liu、Tony Milodowski、Jonathan Pearce、Simon Kemp、Chris Rochelle、Gareth Williams、Paul Williamson。BP Exploration Operating Company Ltd Chertsey Road Sunbury-on-Thames Middlesex TW16 7LN 英国 Shelagh Baines、John Williams。 BRGM (Bureau de Recherches Géologiques et Minières) 3 Avenue Claude Guillemin BP 36009 45060 Orléans Cedex 2 France Pascal Audigane、Isabelle Czernichowski-Lauriol、Pierre Durst、Hubert Fabriol、Irina Gaus、Christophe Kervevan、Bernard Sanjuan。
Ava Miklos Tompkins高中对不同形式的科学研究和研究的抽象研究涉及各种不同的道德和社会观点,以便全面地了解该研究的限制和边界可以将其实施到一般公众使用中。在生物技术领域,由于目前和子孙后代都可以改变存在的身体的能力,因此有大量的反应,其中大多数都来自宗教教派。基督教教派表明,对科学进步和意识形态有一定的犹豫,违反了自己的信仰,这种模式自16和17世纪随着科学革命的引入而被说明。然而,不同的基督教分支机构可能比其他人更坦率地看待生物技术的实施,这就是为什么了解生物技术的持续发展是否具有反对当代社会中基督教的伦理价值观的原因。基督教社区所拥有的负面含义的生物技术进步的需求可能会发现随着时间的流逝,由于人们对科学的越来越普及,因此随着时间的流逝而减少了随着时间的流逝,将科学视为在年轻一代内不同疾病中的人类的能力。但是,基督教社区学习科学概念的机会仍然很重要,因为如果宗教团体希望遵守自己的信仰,成功引入生物技术优势的努力可能会过时。基督教伦理对生物技术弹性科学的影响是一个永无止境的进步主题,无论是在化学,物理,生物学还是技术领域。重大科学进步的第一个时期发生在16和17世纪,当时人们开始在一个名为科学革命的时代接受科学理论(Grant,1962)。这个时期允许许多科学领域的学科以及科学家和数学家(例如Issac Newton,Nicolaus Copernicus和Galileo Galilei)在物理和天文学方面的知识,尤其是以直播的信念,尤其是Solar System围绕太阳围绕太阳,而不是地球本身的概念(而不是地球本身)(而不是Earth and thaniyelson)(Daniyelson&Grane&Grane)。这种信念与天主教教会先前的科学假设(正如他们在地理中心理论中所相信的,或者地球都是宇宙和天堂都围绕着地球围绕的“不可移动的中心”的概念形成鲜明对比(Wallace,1983,第156页)。这种对比导致教会和接受科学推理的人之间的冲突不断上升,尽管接受这些新的科学发展的人普遍接受了21世纪基督教社区的支持,但仍然存在辩论的主题,这些主题源自这一主题。最突出的是生物技术的发展,这是科学和宗教社区中广泛争议的话题,因为它以以前无法实现的方式帮助和修改人们的身体的能力(Rheeder,2014年)。因此,不同的基督教分支机构可能试图减轻其实施,尤其是在自己的宗教社区中,这是他们认为对人类有害的道德违规行为(Watling,2006年)。因此,必须解决以下问题:生物技术的进步是否在多大程度上,是否有弹性,反对21世纪基督教的道德价值观?尽管许多基督徒质疑生物技术和概念的道德和哲学价值