注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE-AC05-00OR22725,与美国能源部签订。美国政府保留,出版商在接受文章发表时,承认美国政府保留非独占、已付费、不可撤销的全球许可,可出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 (http://energy.gov/downloads/doe-public-access-plan) 向公众提供这些联邦资助研究的结果。
蛋白XPA在核苷酸切除修复途径中起关键作用。最近的实验工作表明,XPA的功能动力学涉及沿DNA的一维扩散以搜索损伤位点。在这里,我们使用各种盐浓度的广泛的粗粒分子模拟来研究所涉及的动力学过程。结果表明扩散机制的盐浓度依赖性很强。在低盐浓度下,与旋转耦合的一维扩散是主要机制。在高盐浓度下,三维机制的扩散变得更有可能。在较广泛的盐浓度下,涉及DNA结合的残基是相似的,并且沿DNA显示的XPA的一维扩散是降低功能。此亚延伸功能暂定归因于XPA – DNA相互作用的各种强度。另外,我们表明,与DNA的结合和盐浓度升高倾向于拉伸XPA的构象,从而增加了位点的暴露范围,以结合其他修复蛋白。
项目 PAL-ES2 – 4232 PAL-ES3 - 4233 产品代码 ATA 000TBA ATA 000TBA 测量方法 电导率法 测量范围 0.00 至 5.00% (g/100g) 0.0 至 33.0% (g/100ml) (测量蒸馏水稀释 10 倍的样品(按重量计算)。以百分比(g/100ml)表示稀释前的样品的盐浓度。) 分辨率 0.01%(盐浓度为 0.00 至 2.99%) 0.1g/100ml 0.1%(盐浓度为 3.0 至 5.0%) 测量精度 显示值 0.05% 显示值 +0.6g/100ml(盐浓度为 0.00 至 1.00%) 相对精度 + 小于 6% 相对精度小于5%(测量值为 10 至 33.0g/100ml)(盐浓度为 1.01 至 5.0%) 温度补偿 10 至 40°C(保证精度范围 15 至 35°C) 国际防护等级 IP65 防水 尺寸和重量 5.5 x 3.1 x 10.9cm,100g(仅主机) 电源 2 节 AAA 电池
绿贻贝是双壳类软体动物,可通过盐发酵保存以提高其品质。本研究旨在使用响应曲面法 (RSM) 和 D 最优设计优化绿贻贝的发酵工艺。变量包括盐浓度(5-30%)和发酵期(1-4 周)。RSM 共产生了 16 种盐浓度和发酵期的组合条件。响应包括 pH、菌落总数 (TPC) 和总体可接受性。根据结果,发酵绿贻贝的优化条件为 15.05% 盐浓度和 2.6 周发酵期。可取性值为 0.733。最佳条件的 pH 值为 4.71,菌落总数为 3.63 log CFU/g,总体可接受性得分为 8.99。总体而言,本研究结果可应用于生产高品质盐发酵绿贻贝的工艺标准化。建议进一步研究发酵产品中的细菌鉴定和延长发酵时间。
centella asiatica,通常称为亚洲彭尼沃特(Asiatic Pennywort)和gotukola,拥有各种各样的植物化学物质。这种复杂的植物植物组成使其适用于广泛的药用和商业应用。植物体为各种微生物的生长和存活提供了一个栖息地,并具有其微生物组。在这项研究中,为分离和识别细菌居民从植物的叶子中进行了努力。进一步测试了细菌分离株的渗透压活性,使它们能够生存并以高盐浓度生长。高盐浓度是影响生物体生长的重要非生物参数之一。高盐浓度通过产生过量的活性氧引起植物的非生物胁迫,从而导致生物分子和渗透冲击损害。然而,某些活生物体尤其是细菌属于称为渗透压的群体,并具有分子和生化机械,这有助于缓解这种盐胁迫,并使它们能够以高盐浓度生存。在研究期间,使用特定的微生物培养方法从亚洲梭菌的植物平移中分离出各种细菌。对分离的细菌种群进行鉴定和表征。应用各种形态学和生化方法来表征细菌分离株。最终使用高级分子方法(如16S rRNA测序)鉴定了渗透压细菌。在培养基板上进一步生长,其中含有越来越多的盐,例如氯化钠,甘露醇和山梨糖醇,这些盐有助于分离渗透压细菌。这项研究的结果表明,该植物在其Phylloplane中具有各种细菌居民,并且所有三个细菌分离株都以渗透耐耐受活性而闻名和鉴定。
• 专门针对之前采样的、硝酸盐浓度升高(10 mg/L 或以上)的水井制定宣传材料。目标是与之前的参与者重新建立联系,让他们了解替代水的新信息和机会,并收集有关其用水状况的更多信息,以便确定优先顺序。将为硝酸盐升高数据少于 5 年(2017 年之后收集)的水井所有者制定特定的宣传材料。这些材料将包括有关孕妇、婴儿用水以及有孩子的家庭经济需求的问题(复选框),以帮助确定优先顺序。一般来说,2018 年之前(>5 年)收集的硝酸盐浓度水平为 10 mg/L 或更高的水井将优先重新采样,然后进行可能的处理。
MEDUSA2诊断方案(模型使用经验参数化将DMS浓度与一个复合变量联系起来,该复合变量包括CHL浓度,光和依赖硝酸盐浓度的营养术语的对数)
使用不同的进食策略和初始浓度评估了9.5 L填充床柱生物反应器的硝酸盐去除效率。生物反应器充满沸石矿物颗粒,并最初用硫哥省denitrificans处理。检查了几个液压保留时间,以评估去除硝酸盐的有效性。最有利的方案导致在三个小时内的400 mg/l进水中硝酸盐浓度降低了87%。为了确定生物反应器的最佳长度,开发了计算流体动力学模型。通过将模拟与实验结果进行比较,针对400 mg/l,250 mg/l,120 mg/l,120 mg/l,和80 mg/l的硝酸盐浓度分别为400 mg/l,250 mg/l,和80 mg/l,确定对完全反硝化的生物反应器的理想高度为90 cm,45 cm,30 cm和20 cm。
由于用胰腺RNase治疗分离的核蛋白的结构作用不仅导致SedimentAtion系数和RNA含量的降低(33),而且还导致大小(5)。从病毒粒子中提取的 RNA显示出具有感染性所必需的显着二级结构的特性。 当将RNA制备加热后,然后快速冷却时,残留感染力I〜以盐浓度保留。 缓慢的冷却比快速冷却更有生存期。 这些条件不利于进行比较的脊髓灰质炎病毒RNA的存活(54)。 与其他Alphavirusee Hyperhromicity已被证明了RNA(WEE:TM = 57.5°C(57)JRNA显示出具有感染性所必需的显着二级结构的特性。当将RNA制备加热后,然后快速冷却时,残留感染力I〜以盐浓度保留。缓慢的冷却比快速冷却更有生存期。这些条件不利于进行比较的脊髓灰质炎病毒RNA的存活(54)。与其他Alphavirusee Hyperhromicity已被证明了RNA(WEE:TM = 57.5°C(57)J
摘要:卤素微生物是一种极端的生物,可以在高盐浓度下散布,其中很大一部分由卤素细菌组成。盐矿是检测到卤素细菌的重要来源。在这项研究中,从ÇankırıSaltIne分离出Halobacillus trueperi CT7(一种卤素细菌)。确定获得的菌株通过DNA分离和序列分析以及生化分析表现出98.1%与Trueperi的相似性。此外,还进行了二维(扫描电子显微镜)和三维(原子力显微镜)图像的halobacillus trueperi图像,以揭示细胞形态。为了确定微生物的工业用途潜力,物种可以生长的最低和最大盐浓度,温度和pH值以及物种可以生长的酶活性。对卤素生物在极端工业过程中使用的兴趣日益增加。认为这项研究将有助于未来关于卤素细菌的研究。