Bilel Si Smail、Thomas Cailloux、Yann Quinsat、Wilfried Pacquentin、Srikanth Narasimalu 等。使用激光金属沉积修复不锈钢 316L 部件点蚀的综合方法。《制造工艺杂志》,2023 年,95,第 1-13 页。�10.1016/j.jmapro.2023.04.007�。�hal-04071595�
方法图1示出了传统上用于制造FPC的减成法。在铜箔层上形成抗蚀层,在蚀刻过程中,铜箔层的未覆盖部分被溶解并去除。之后,去除抗蚀层,铜箔层的剩余部分成为线路。在蚀刻过程中,蚀刻不仅在铜箔层的厚度方向上进行,而且在横向(侧蚀)方向上进行,这使得在高密度布线中难以缩小线路间距。此外,由于使用厚铜箔,需要蚀刻大量的铜材料,这导致侧蚀的进展变化很大,因此线路宽度变化很大。此外,蚀刻开始的铜箔层的上部比下部蚀刻得更多,结果,线路横截面的顶部比底部更窄
有机蛋白质因其独特的光学性质、卓越的机械特性和生物相容性而备受青睐。在有机蛋白质薄膜上制造多功能结构对于实际应用至关重要;然而,特定结构的可控制造仍然具有挑战性。在此,我们提出了一种通过调节有机材料的凸起和烧蚀在丝膜表面创建特定结构的策略。基于受控的超快激光诱导晶体形态转变和丝蛋白的等离子体烧蚀,产生了直径连续变化的独特表面形貌,如凸起和凹坑。由于不同周期的凸起/凹坑结构具有各向异性的光学特性,所制造的有机薄膜可用于大规模无墨彩色打印。通过同时设计凸起/凹坑结构,我们设计并展示了基于有机薄膜的光学功能装置,该装置可实现全息成像和光学聚焦。这项研究为多功能微/纳米结构的制造提供了一种有前途的策略,可以拓宽有机材料的潜在应用。
具有基本螺旋-环-螺旋(bHLH)结构的转录因子广泛调控植物的生长、表皮结构发育、代谢过程和对压力的反应。海薰衣草(Limonium bicolor)是一种泌盐植物,其表皮中独特的盐腺使其具有很强的抗盐胁迫能力,有助于盐碱地的改良。但海薰衣草中bHLH转录因子家族的特征尚不清楚。本文通过遗传分析系统地分析了整个海薰衣草基因组中187个已鉴定的bHLH家族基因的特征、定位和系统发育关系,以及它们的顺式调控启动子元件、表达模式和在盐腺发育或耐盐性中的关键作用。已验证的9个海薰衣草bHLH基因在细胞核中表达且编码的蛋白在细胞核中发挥作用,其中Lb2G14060和Lb1G07934编码的蛋白也定位于盐腺中。 CRISPR-Cas9 敲除突变体和过表达株分析表明,Lb1G07934 编码的蛋白参与盐腺形成、盐分泌和抗盐性,表明 bHLH 基因对盐胁迫响应和表皮结构发育具有重要影响。本研究为进一步研究 bHLH 基因在盐芥中的作用和作用机制奠定了基础,为筛选提高作物抗盐性的耐盐基因和改良盐渍土奠定了基础。
A 梯队 (gb) 第二梯队战斗人员(战斗列车)[它包括立即可用于支持梯队 F 的人员和物资) a/o (as of);(as) 从 1500 小时(节拍等)a/c (15 小时等)ABAC 比例换算表放弃拒绝货物减弱钝器减弱手臂武器钝边 abatis abattis abbot 105 毫米自行式(SP)105阿伯特(GB)自行式榴弹炮:最大射程= 17350 m;它装备直接支援团;两栖Abeam Abeam Abeam补给夫妇补给像差像差能力能力能力服务国家服役能力烧蚀锥烧蚀锥烧蚀烧蚀烧蚀鼻锥弹头烧蚀能干水手。一等能级海员任务失败中止(不是由于敌人); (以导弹为例:)启动失败,发射不成功。 abort (to) 中止、中断(任务等) abort (to)(mission) 取消(任务)
1 阿利坎特大学科学学院生物化学与分子生物学、土壤学与农业化学系,Carretera San Vicente del Raspeig s/n,03690 San Vicente del Raspeig,阿利坎特,西班牙 2 阿利坎特大学环境研究多学科研究所“Ramón Margalef” (IMEM),Carretera San Vicente del Raspeig s/n,03690 San Vicente del Raspeig,阿利坎特,西班牙 ∗ 通讯作者。阿利坎特大学科学学院生物化学与分子生物学、土壤学与农业化学系,Carreter a San Vicente del Raspeig s/n,03690 San Vicente del Raspeig,阿利坎特,西班牙。电话:+ 34 96 5903400 分机 1258;传真:+ 34 96 590 3464。电子邮件:carmen.pire@ua.es 编辑:[Serena Rinaldo]
HC(NH 2)2 1+);二价M 2+是Pb 2+,SN 2+或GE 2+; x 1-是Cl 1-,Br 1-或I 1-。[32,33]有机A 1+
熔融硝酸盐和/或氯化盐是用于存储与太阳能热能应用相关的热能的常见候选物。这些熔融盐必须包含在存储系统中,通常由冷水罐组成。当直接阳光不可用时,储存的热能从熔融盐通过热交换器和发电机回收。问题在于坦克衬里。例如,特殊的不锈钢罐已用于熔融硝酸盐盐。仍然,在盐工作温度下,不锈钢的腐蚀和热机械故障是主要问题。随着时间的流逝,不锈钢腐蚀和降解,因此需要一种对熔融盐无反应的难治系统,但同时是一种有效的热绝缘子,尤其是当可能发生盐渗透到油罐衬里时。储罐温度降低,可以使用更负担得起的储罐建筑材料,例如碳钢。确定一个地球聚合物(GP)粘合剂系统在装有粉煤灰微球时适合该法案。将详细介绍此GP难治的组成和特性。仍然,标称密度为60磅的耐火材料(0.96 g/cc),> 2000 psi(13.8 MPa)的抗压强度和2.2至2.8 btu- in/hr-ft 2.2至2.8 btu- in/hr-ft²·°f(根据平均温度)的使用范围为1832222222.100020002000200020002000。
盐皮质激素受体是一种类固醇激素受体,众所周知,它参与远端肾单位上皮细胞的体液和电解质稳态。目前已知这种受体的不适当激活与心力衰竭的各种病理生理机制有关。盐皮质激素受体拮抗剂对射血分数降低的心力衰竭患者有显著的临床益处;然而,对于射血分数保留的心力衰竭患者,治疗益处尚不明确。目前尚不存在可以预测对盐皮质激素受体拮抗剂治疗反应的生物标志物。潜在的生物标志物可能直接受盐皮质激素受体调节,或通过下游效应间接调节,并能够反映治疗结果,特别是心脏健康和功能关键参数的变化。能够在早期可靠地预测对盐皮质激素受体拮抗剂治疗的反应性的生物标志物或生物标志物集合可用于选择最有可能从治疗中受益的患者,从而避免与使用这些药物相关的任何不必要的副作用。
摘要 二氯乙酸 (DCA) 是一种用于治疗癌症的试验药物。DCA 主要作用于癌细胞代谢;据认为,它通过抑制丙酮酸脱氢酶激酶将代谢从发酵糖酵解转化回氧化磷酸化。该过程可能通过几种机制诱导癌细胞凋亡,包括增加氧化应激和降低乳酸水平。DCA 可以口服或静脉注射。典型剂量范围为每天 10-50 毫克/千克,最常见的口服剂量为每天两次,每次 6.25-12.5 毫克/千克。一项随机对照试验、五项单臂临床试验和几份病例报告评估了 DCA 对癌症的影响。这些研究的结果好坏参半。虽然大多数研究发现 DCA 是安全的并且耐受性相当好,但一项研究和几份病例报告提出了一些安全问题。DCA 应在合格医疗专业人员的指导下进行适当监测。最常见的副作用是可逆性周围神经病变。有一些临床试验证据表明使用 DCA 可以稳定病情,也有一些令人鼓舞的病例报告,但总体而言,没有足够的证据明确支持