在原子尺度上设计和表征量子多体系统对于理解强关联物理和量子信息处理至关重要。最近,将电子自旋共振 (ESR) 与扫描隧道显微镜 (STM) 相结合,可以高精度地探索表面上相互作用的自旋 [1]。ESR-STM 的亚埃空间分辨率和超高能量分辨率使我们能够测量单个原子之间的磁相互作用、检测单个核自旋以及探索工程自旋阵列中的量子涨落。在本次演讲中,我将介绍我们最近使用 ESR-STM 从绝缘膜上的原子自旋构建拓扑量子磁体的努力 [2]。这些拓扑量子磁体包括自旋 1/2 链和二维自旋 1/2 阵列。我们设计了量子自旋模型的拓扑相和平凡相,从而实现了一阶和二阶拓扑量子磁体。它们的多体激发由能量分辨率优于 100 neV 的单原子 ESR 探测。我们进一步可视化了各种多体拓扑束缚模式,包括拓扑边缘态和高阶角模式。这些结果为模拟相互作用自旋的量子多体相提供了一种重要的自下而上的方法来模拟。[1] K. Yang 等人。Nat. Commun. 12, 993 (2021) [2] H. Wang 等人。Nat. Nanotechnol. (2024) https://doi.org/10.1038/s41565-024-01775-2
校正(QEC),横向和非转交逻辑门及其对普遍性的影响。然后,我将重点介绍Rydberg Atom阵列作为FTQC平台的特定优势和机会,并展示其独特功能(例如非本地连接性,平行的闸门动作,集体活动性,集体移动性以及本地多控制的Gates)如何使用诸如魔术和良好的魔术集合,以实现魔术,并在魔术中实现魔术,以实现魔术,并使用魔术。受控-z代码(https://arxiv.org/abs/2312.09111)。
探索奇异的电子订单及其潜在的驱动力仍然是量子材料领域的中心追求。在这种情况下,Kagome Lattice是一个转角共享的三角网络,已成为探索非常规相关和拓扑量子状态的多功能平台。Due to the unique correlation effects and frustrated lattice geometry inherent to kagome lattices, several families of kagome metals have been found to display a variety of exotic electronic instabilities and nontrivial topologies, including unconventional superconductivity, charge density wave orders, and electronic nematicity, reminiscent of the complex competing orders observed in high-temperature superconductors.在此背景下,Kagome Systems提供了一个出色的量子操场,可深入研究非常规电子不稳定性的起源。在这次演讲中,我将介绍我们最近的工作,重点介绍了两个著名的kagome超导体:V 3 SB 5(a = k,rb,cs)中的非常规CDW,以及在Ti 3 Bi 5中观察到的电子nematicities。尤其是从源自角度分辨光发射光谱(ARPES)的见解中绘制的,我将突出这些系统的独特特征,阐明它们有趣的电子行为并阐明其潜在机制。
摘要:快速,定期监测和评估区域生物多样性是生物多样性研究和保护的重要意义。近年来,遥感技术已广泛应用于生物多样性研究中,并可以提供区域,大陆和全球生物多样性信息。这种方法是低成本和高数据一致性,并且很大程度上更新了。This paper introduced the principles and advantages of remote sensing in biodiversity re鄄 search, and summarized the main application aspects of biodiversity remote sensing in practice, including landscape indices, NDVI, spectral variation hypothesis (SVH), and hyperspectral re鄄 mote sensing, with the focus on the analysis of the advantages and disadvantages of these applica鄄 tion aspects and the recent research SVH研究和最佳频段选择的进步。指出了遥感生物多样性研究中的缺陷,并且研究了该研究领域的发展趋势,例如模型,遥感者和规模效应。
量子厅效应的发现已确立了拓扑凝结物理学领域的基础。对现在在量子计量学中所采用的霍尔电导的精确量化,由于其拓扑保护而在任何合理的扰动中都是稳定的。相反,后者暗示了一种审查形式,通过向观察者隐瞒任何当地信息。量子厅系统中电流的空间分布就是这样的信息,由于最近的进步,该信息现在已成为实验探针的访问。是一个古老的问题,是否原始的和直观地引人注目的电流理论图片沿着样品边缘流动在狭窄的通道中,是物理上正确的。是由最近在Chern绝缘子中量化电流的局部成像的动机[Rosen等,Phys。修订版Lett。 129,246602(2022); Ferguson等,Nat。 mater。 22,1100-1105(2023)],从理论上讲,我们证明了一个宽阔的“边缘状态”的可能性,通常从样品边界深入到大块的样品边界上。 此外,我们表明,通过改变实验参数,人们可以在边缘状态狭窄和蜿蜒通道之间连续调整,一直到主要发生的电荷运输。 这说明了在实验中观察到的各种特征和不同的特征。 参考:PNAS,121号 39 E2410703121(2024)Lett。129,246602(2022); Ferguson等,Nat。mater。22,1100-1105(2023)],从理论上讲,我们证明了一个宽阔的“边缘状态”的可能性,通常从样品边界深入到大块的样品边界上。此外,我们表明,通过改变实验参数,人们可以在边缘状态狭窄和蜿蜒通道之间连续调整,一直到主要发生的电荷运输。这说明了在实验中观察到的各种特征和不同的特征。参考:PNAS,121号39 E2410703121(2024)总的来说,我们的发现强调了拓扑凝结物理学的鲁棒性,但也揭示了现象学的丰富性,直到最近被拓扑审查制度隐藏了,我们认为其中大多数仍然有待发现。
为系统全面反映我国数字经济发展的规模、速度、结构、效益,以及数字经济与实体经济的深度融合和对国民经济的带动作用、渗透作用,为宏观调控和决策管理提供重要参考,国家统计局制定了数字经济统计监测制度(试行)。同时,将在第五次全国经济普查中调查全口径数字经济基础数据,为每年核算数字经济增加值创造条件。
涡度相关法直接测定的是净生态系统碳交换(Net Ecosystem Exchange, NEE)。监测样地的碳汇 为一定时期净生态系统碳交换(NEE)累加值的负值,即净生态系统生产力(NEP)。当NEP为正值时, 表示监测区域为碳汇;当NEP为负值时,表示监测区域为碳源。
在非相对论量子系统中,利布-罗宾逊定理 [1-2] 规定了一个新出现的速度限制 v,在幺正演化下建立了局部性,并限制了执行有用量子任务所需的时间。在本次演讲中,我将介绍我们的工作 [3],即将利布-罗宾逊定理扩展到具有测量和自适应反馈的量子动力学。与测量可以任意违反空间局部性的预期相反,我们发现量子信息的速度最多可以提高 (M+1) 倍,前提是已知 M 个局部测量的结果;即使经典通信是即时的,这也是如此。我们的界限是渐近最优的,并且被现有的基于测量的协议所饱和 [4]。我们严格限制了量子计算、纠错、隐形传态以及从短程纠缠初始状态生成纠缠资源状态(Bell、GHZ、Dicke、W 和自旋压缩状态)的资源要求。我们的研究结果限制了使用测量和主动反馈来加速量子信息处理,并限制了大量已提出的量子技术的可扩展性。参考文献:[1] Lieb 和 Robinson,“量子自旋系统的有限群速度”,Comm. Math. Phys. 28, 251 (1972)。[2] Chen, Lucas 和 Yin,“多体量子动力学中的速度限制和局部性”,arXiv:2303.07386。[3] Friedman, Yin, Hong 和 Lucas,“带测量的量子动力学中的局部性和误差校正”,arXiv:2206.09929。[4] Briegel, Dur, Cirac 和 Zoller,“量子中继器:不完美局部操作在量子通信中的作用”,Phys. Rev. Lett. 81, 5932 (1998)。
量子力学的很大一部分效力在热平衡中被掩盖。不同的领域依赖于创建远离平衡的量子相,例如量子化粒子和多体系统,它们应用于量子信息处理和存储。超快太赫兹频率 (THz) 激光脉冲具有实现由集体量子效应决定的非平衡相的诱人能力,因为它们的时间尺度与电子、自旋、晶格离子等的纳米级动力学相称。在本次演讲中,我将展示太赫兹频率脉冲可以控制单个量子点中的通用光致发光闪烁 [1,2],尽管经过了二十年的研究,但这仍然是一个持续的挑战。然后,我将介绍一种用于选择性相位控制的新型非共振激发方法,以 LiNbO 3 中的铁电反转和 SnSe 和 MoTe 2 中的多态跃迁为例,它们与非平凡的能带拓扑交织在一起 [3,4]。最后,我将说明如何利用对太赫兹与物质相互作用的基本理解来设计用于偏振敏感太赫兹成像的纳米光子装置 [5]。[1] Shi, J. 等人。Nat. Nanotechnol. 16, 1355 (2021)。[2] Shi, J. 等人。Nano. Lett. 22, 1718 (2022)。[3] Shi, J. 等人。Nat. Commun.,即将出版。arXiv : 1910.13609 (2023)。[4] Shi, J. 等人。Nat. Phys.,正在审查中。[5] Shi, J. 等人。Nat. Nanotechnol. 17, 1288 (2022)。