首先,让我预测并回答这个问题,即 Infogix 为何赞助这项持续监控研究项目?答案显而易见,因为 Infogix 一直是财务主管国际 (FEI) 的骄傲战略合作伙伴。此外,这个主题对 FEI 的成员以及 Infogix 及其客户都十分感兴趣。另一个有说服力的答案来自本研究本身的一件轶事。当被问及部署一个单一的、自动化的持续监控解决方案是否有价值时,该解决方案可以监控组织所有业务领域的财务控制、数据质量控制、财务对账、风险和业务绩效,Hallmark Cards 的高级项目经理 Pam Oberdiek 回答说:“但那将是母爱和苹果派!如果存在的话,谁会不想要呢?”Infogix 赞助这项研究的另一个好答案自然而然地出现了——我们是持续监控的倡导者,致力于创建“母爱和苹果派”持续监控解决方案。
雪况调查可以追溯到 20 世纪初。如今,雪况监测活动已经扩展到更多地区,技术进步使得这些测量更加精确。雪况监测可以为从短期径流到季节性供水预报等一系列预报提供信息,监测技术的进步可以带来预报效益。然而,雪况以及融雪径流的时间和规模仍然存在不确定性。这些不确定性在一定程度上反映了监测西部雪况的挑战,西部的地貌非常多样,有海拔超过 14,000 英尺的高峰、广阔的平原、高地沙漠和森林茂密的地区。在私人土地、荒野地区和人迹罕至的地区测量雪况可能具有挑战性。雪况本身的多变性质以及经常伴随雪况的极端寒冷可能对有效、可靠的雪况监测构成挑战。雪况测量可以从不同的平台进行,从地面到飞机和卫星,或者使用建模工具进行估算。每个平台和每种特定的雪监测技术都需要在成本、空间覆盖范围、时间覆盖范围、准确度、精确度、分辨率、地理适用性和可靠性之间进行权衡。
量子纠缠是量子粒子之间无法通过局部操作和经典通信增加的量子粒子之间的一种形式。因此,有人提出,仅通过培养基相互作用的探针之间的量子纠缠增加意味着媒体的非经典性。的确,在某些关于初始状态的假设下,探针之间的纠缠增益表明调解器中的量子相干性。作为这样的假设,还有其他初始状态,仅通过与经典调解人的局部相互作用导致探针之间的纠缠。在此过程中,任何探针与其他系统的其余部分之间的初始纠缠“流过”经典调解人,并在探针之间定位。在这里,我们从理论上表征了通过经典介质的最大纠缠增益,并使用液态NMR光谱法实验证明,量子相关性的光学生长是在两个核自旋速度之间通过经典状态下通过介体相互作用的核自旋速度之间的。我们还监视了介体,以强调其经典特征。在这里注意到没有生成新的纠缠,而是在系统中已经存在或本地化了两个探针量子器之间的相关性。我们的结果表示
表 III:主要仪器类别概述.................................................................................................250 表 IV1:α 发射体...................................................................................................................253 表 IV2:β 发射体...................................................................................................................253 表 IV3:γ 发射体.........................................................................................................................254 表 IV4:Ge 能谱仪测量的光谱中的背景γ 线....................................................257 表 IV5:γ 线:按能量列出....................................................................................................258 表 IV6:γ 能谱测定中可能出现的干扰....................................................................262 表 IV7:不同核事故中释放的特征放射性核素....................................................................264 表 IV8:反应堆事故释放中的特征 γ 发射体.............................................................................265 表 VI:反应堆事故中的油.............................................................................................................267
海洋环境监测系统对研究人员具有重要意义,因为海洋是自然资源的仓库。理解和评估海洋的环境条件至关重要。在过去的几十年中,已经进行了几项研究,这些研究使用了复杂的信息和通信技术来确保海洋生态系统。无线传感器网络(WSN)是监视海洋环境的有前途的技术,它带来了巨大的好处,例如提高准确性和实时观察结果。传感器技术的进步,例如微电机电系统(MEMS),集成系统,分布式处理,无线通信和无线传感器应用程序,有助于WSN的开发。本文介绍了WSN的利用,并分析了通过WSN进行海洋环境监测的先前和现有项目的工作和技术,还包括用于监视各种海洋参数的MEMS传感器技术,例如海浪监测,水电导率,温度,温度,海洋深度。