颅骨插曲是重要的第一步。基于学习的细分模型(例如U-NET模型)在自动执行此细分任务时显示出令人鼓舞的结果。但是,当涉及到新生儿MRI数据时,在培训这些模型期间,没有任何可公开可用的大脑MRI数据集随着手动注释的segmentment口罩而被用作标签。大脑MR图像的手动分割是耗时,劳动力密集的,需要专业知识。此外,由于成人数据和新生儿数据之间的较大域移动,使用对成人脑MR图像进行训练的分割模型进行分割新生脑图像无效。因此,需要对新生儿大脑MRI的更有效,准确的颅骨剥离方法。在本文中,我们提出了一种无监督的方法,以适应经过成人MRI训练的U-NET颅骨剥离模型,以有效地在新生儿上工作。我们的资产证明了我们新颖的未加剧方法在提高分割准确性方面的有效性。我们提出的方法达到了总体骰子系数为0。916±0。032(平均值±STD),我们的消融研究巩固了我们提议的有效性。非常重要的是,我们的模型的性能与我们进行了综合的当前最新监督模型非常接近。所有代码均可在以下网址提供:https://github.com/abbasomidi77/daunet。这些发现表明,这种方法是一种有价值,更容易,更快的工具,用于支持医疗保健专业人员,以检查新生大脑的先生。
虽然 KCC 并不直接规划输电,但我们广泛参与 SPP 活动。这包括在区域州委员会 (委员 Andrew French) 和成本分配工作组 (前委员 Shari Feist Albrecht) 中保留堪萨斯州代表。 我们还监督和参与以下 SPP 利益相关者小组:市场工作组、区域关税工作组、供应充足性工作组、改进资源可用性工作组、运营可靠性工作组、区域分配审查工作组、综合规划流程工作组等。 KCC 确实根据 KSA 66-131 监管在堪萨斯州拥有和运营输电的证书的授予,并根据 KSA 66-1,177-KSA 66-1,180 监管输电线路的选址。
●Breiman(2001)首先提出了随机森林算法,但基于1995年的Tim Kan Ho●RF采用了两种集合技术:首先是训练样本,以种植基于不同培训训练数据的树木森林。第二个是特征空间的子采样。●如果我选择变量的子集(例如x1, x3, x7) to create a split in a node of a decision tree, and another subset (x2, x4, x5, x7) to create a different one, there will be events that get classified in a different way by the two nodes ● Often there is a dominant variables that is used to decide the split, offsetting the power of the subdominant ones.rf通过减少不同树的相关性来避免该问题
118。检查警察场所和拘留设施等。119。进行检查等目的等。120。检查范围。121。检查方式。122。要检查的元素。123。管理检查。124。指导检查的原则。125。进行访谈等。126。采访被拘留者时要考虑的因素。127。根据要求进行检查。128。一般或常规检查。129。主题或有针对性的检查。130。特别检查。131。后续检查。132。检查期间指定官员的义务。133。在检查期间,服务成员的义务。134。董事会批准和考虑。135。其他州机器人在检查报告中采取的措施。136。检查工具和清单。137。发布和宣传检查报告。138。对总检察长的检查报告的行动。第XVI部分 - 其他条款
本文介绍了一种新颖的方法,可以使用极端点,即每个对象的最上方,最左侧,最左侧,bottommost和最右点进行学习。这些要点在现代边界框注释过程中很容易获得,同时为预分段提供了强大的线索,因此可以使用盒子监督的方法以相同的注释成本来提高性能。我们的工作将极端点视为真实实例掩盖的一部分,并传播它们以识别潜在的前面和背景点,它们全部用于训练伪标签生成器。然后,发电机给出的伪标签又用于监督我们的最终模型。在三个公共基准测试中,我们的方法大大优于现有的盒子监督方法,以完全监督的对应物进一步缩小了差距。尤其是,当目标对象分为多个部分时,我们的模型会生成高质量的掩码,而以前的盒子监督方法通常会失败。
胎儿心脏视图的解剖结构检测对于诊断胎儿先天性心脏病至关重要。实际上,不同的Hos-Pitals数据之间存在较大的域间隙,例如由于采集设备的不同而引起的可变数据质量。此外,产科专家提供的准确的符号信息非常昂贵甚至无法使用。本研究探讨了无监督的域自适应胎儿心脏结构检测问题。现有的无监督域自适应观察检测(UDAOD)的方法主要集中在自然场景中的特定物体,例如雾gy的城市景观中,自然场景的结构关系是不确定的。Unlike all previous UDAOD scenarios, we first collected a F etal C ardiac S tructure dataset from two hos- pital centers, called FCS , and proposed a multi-matching UDA approach ( M 3 -UDA ), including H istogram M atching (HM), S ub-structure M atching (SM), and G lobal-structure M atching (GM), to better transfer the在医疗场景中进行UDA检测的解剖结构的拓扑知识。HM减轻由像素转换引起的源和目标之间的域间隙。sm融合了子结构的不同角度信息,以遵循局部拓扑知识,以弥合内部子结构的主要间隙。GM旨在使整个器官的全球拓扑知识与目标域相结合。对我们收集的FCS和Cardiacuda进行了广泛的实验,实验结果表明,M 3 -UDA的表现胜过现有的UDAOD研究。数据集和源代码可在https://github.com/xmed-lab/m3-uda
我们为不依赖于人类反馈的大型语言模型(LLMS)提出了一种新颖的增强学习(RL)框架。相反,我们的方法使用模型本身中的交叉注意信号来获得自我监督的奖励,从而指导对模型策略的迭代微调。通过分析模型在生成过程中如何“参加”输入提示,我们构建了及时的覆盖,重点和连贯性的度量。然后,我们使用这些措施来对候选响应进行排名或评分,提供了奖励信号,鼓励模型产生良好的一致,主题文本。在与标准策略梯度方法的经验比较和合成偏好模型的RL微调中,我们的方法在非RL基线的迅速相关性和一致性方面显示出显着的提高。虽然它尚未与完全监督的RLHF系统的性能相匹配,但它突出了使用最小的人类标记来扩展对齐的重要方向。我们提供了详细的分析,讨论潜在的局限性,并概述了将基于跨注意的信号与较少人类反馈相结合的未来工作。
永久牧场可以拥有高植物多样性,包括一些稀有植物。环境影响评估(EIA)法规已适当以保护这种多样性。但是,某些永久性牧场的植物多样性低,生产率较低,并且由对牲畜的古怪性低的杂草草主导。
神经科学的最新进展强调了多模式医学数据在研究某些病理和了解人类认知方面的有效性。但是,获得一组不同的模态的完整集受到各种因素的限制,例如长期获取时间,高检查成本和伪影抑制。此外,神经影像数据的复杂性,高维度和异源性仍然是有效地利用现有随机扫描的另一个关键挑战,因为不同机器通常对相同方式的数据进行了不同的测量。显然需要超越传统成像依赖性过程,并从源中综合解剖学特定的目标模式数据。在本文中,我们建议学习使用新型CSCℓ4NET跨内部和模式内变化的专用特征。通过特征图和多元典范适应性中的模态数据的初始统一,CSCℓ4净4净促进了特征级别的相互转换。正定的riemannian歧管 - 惩罚数据限制项进一步使CSCℓ4NET可以根据变换的特征重新构建缺失测量值。最后,最大化ℓ4 -norm沸腾到计算上有效的优化问题。具有较大的实验可以验证我们的CSCℓ4NET的能力和鲁棒性与Multiple数据集中的最新方法相比。
