神经科学的最新进展强调了多模式医学数据在研究某些病理和了解人类认知方面的有效性。但是,获得一组不同的模态的完整集受到各种因素的限制,例如长期获取时间,高检查成本和伪影抑制。此外,神经影像数据的复杂性,高维度和异源性仍然是有效地利用现有随机扫描的另一个关键挑战,因为不同机器通常对相同方式的数据进行了不同的测量。显然需要超越传统成像依赖性过程,并从源中综合解剖学特定的目标模式数据。在本文中,我们建议学习使用新型CSCℓ4NET跨内部和模式内变化的专用特征。通过特征图和多元典范适应性中的模态数据的初始统一,CSCℓ4净4净促进了特征级别的相互转换。正定的riemannian歧管 - 惩罚数据限制项进一步使CSCℓ4NET可以根据变换的特征重新构建缺失测量值。最后,最大化ℓ4 -norm沸腾到计算上有效的优化问题。具有较大的实验可以验证我们的CSCℓ4NET的能力和鲁棒性与Multiple数据集中的最新方法相比。
近年来在未加强的持续学习方法中取得了重大进展。尽管它们在受控设置中取得了成功,但它们在现实世界中的实用性仍然不确定。在本文中,我们首先从经验上介绍了现有的自我保护的持续学习方法。我们表明,即使有了重播缓冲液,现有的methods也无法保留与时间相关输入的视频的关键知识。我们的见解是,无监督的持续学习的主要挑战源于无法预测的意见,缺乏监督和先验知识。从Hybrid AI中汲取灵感,我们介绍了E Volve,这是一个创新的框架,它是云中的多个预审预周化模型,作为专家,以加强对Lo-cal Clister的现有自我监督的学习方法。e Volve通过新颖的专家聚合损失来利用专家指导,并从云中返回并返回。它还根据专家的信心和量身定制的先验知识将权重动态分配给专家,从而为新流数据提供自适应监督。我们在几个具有时间相关的实地世界数据流中广泛验证了E volve。结果令人信服地表明,E Volve超过了最佳的无监督持续学习方法,在跨Var-IOS数据流的Top-1线性评估准确性中,volve持续了6.1-53.7%,从而确认了多样化的专家指南的功效。代码库位于https://github.com/ orienfish/evolve。
摘要 - 在许多国家中,中风是内瘤和死亡的主要原因。这项研究的目标是弄清楚如何使事情变得更好。我使用了来自Kaggle的中风疾病数据集。患者可以从已预处理的数据中受益。缺血性中风和中风出血是两种中风形式,使用机器学习方法将个体分为两类。在此调查中采用了七次机器学习技术。逻辑回归,支持向量机(SVM),随机森林,猫的增长,多层感知器(MLP),天真的贝叶斯,K-最近的邻居,因此,我们的发现,Cat Boost可以使最佳准确性以及精确和召回值以及F1评分。关键字 - 准确性,数据预处理,机器学习,预测,中风
致我们的社区:欢迎阅读默塞德社区学院区 H 和 J 号法案公民监督委员会年度报告第十七版。作为您的代表,我们委员会的职责和特权是监督选民批准的用于升级和扩建默塞德社区学院和洛斯巴诺斯校区设施的资金的使用情况。委员会根据委员会收到的信息和审计员的年度报告向社区提交此报告。该委员会代表了默塞德社区学院区社区的横截面,包括默塞德、弗雷斯诺和马德拉县的社区。在过去的一年里,我们很高兴与默塞德社区学院区的学生、教师、员工和管理人员一起工作。作为该委员会的成员,我们可以向您保证,默塞德社区学院区的人们正在努力确保每一美元的 H 和 J 号法案都有效地用在对学区使命至关重要的项目上——为社区所有成员提供优质、负担得起、方便的教育机会。能够参与这些变革是件令人兴奋的事,这些变革将确保我们当地的学院继续成为居民和企业的宝贵资源。正如您将在本报告中看到的,我们正在进行几个项目,以修复老化的设施和基础设施、提高效率,并为学生和教师提供最新的技术工具,以增强学习体验。我们的委员会每年举行两次会议。欢迎公众参加。会议日期和地点已在学区网站上公布。您也可以就您的意见和/或问题与我们联系。我们期待您的来信。默塞德社区学院学区第 39 号提案公民债券监督委员会
路线图显示了截至2021年3月底的检查状态,以及我们将如何使用基于风险的方法来解决推迟的检查工作。它描述了我们承诺执行FDA的任务,以保护和促进公共卫生的使命,以及我们希望在我们的员工安全,我们检查的设施的劳动力和公共卫生的头脑上过渡到尽快进行国内监视检查的愿望。在路线图发行后,FDA确定条件适合过渡到2021年7月1日开始的路线图中所述的基本案例方案,这意味着该机构将转向“标准运营水平”进行家庭监视检查。fda遵循基础案例场景中描述的标准操作方法的逐渐过渡,这是由于持续的,与大流行有关的因素阻止了最佳场景中描述的标准操作的立即过渡。
摘要 - 数据科学和机器学习是现代技术进步,有希望的自动见解,预测和决策的最前沿。受到监督和无监督的学习是这种动态景观中的关键范式,每个范式都呈现出其独特的挑战。本文详细概述了受监督和无监督学习所固有的多方面挑战。本文回顾了2019年至2023年之间发表的研究。本文讨论了受监督和无监督学习的挑战。在监督学习中,挑战包括数据标签,过度拟合,有限的概括以及平衡错误等价和决策目标。在无监督的学习中,困难包括诸如过度拟合,选择适当算法和解释结果之类的问题。这包括评估聚类的质量,确定最佳簇数,以及管理噪声和离群值。本文旨在提供对这些挑战的见解,从而增强新手和专家对机器学习的理解。研究人员和从业人员不断发展他们克服这些复杂性的方法和工具。本文是该领域研究人员和专家的宝贵参考,使他们能够自信地应对这些挑战。随着技术的进步,对这些挑战的透彻理解对于释放这些强大工具的全部潜力至关重要。最后,提出了一些建议,以指导未来的研究人员在数据驱动的发现和自动化的旅程中应用机器学习,为那些启动它的人提供挑战和机会。
训练高准确的3D检测器需要使用7个自由度的大规模3D注释,这是既易于且耗时的。因此,提出了点符号的形式,为3D检测中的实践应用提供了重要的前景,这不仅更容易且价格便宜,而且为对象定位提供了强大的空间信息。在本文中,我们从经验中发现,仅适应其3D形式并非遇到两个主要的瓶颈是不算气的:1)它未能在模型中编码强3D,而2)它由于极端的Spars sparsity而产生了低质量的pseudo pseudo Labels。为了克服这些挑战,我们引入了Point-Detr3D,这是一个弱小的半监督3D检测的教师学生框架,旨在在限制的实例注释预算中充分利用点的监督。与点 - dive不同,该点仅通过点编码器编码3D位置信息,我们提出了一个显式的位置查询初始化策略,以增强先验性。考虑到教师模型产生的遥远区域的伪标签质量低时,我们通过通过新型的跨模式可变形ROI融合(D-ROI)结合了密集的图像数据来增强探测器的感知。此外,提出了一种创新的点指导的自我监督学习技术,即使在学生模型中,也可以完全利用点的先验。与代表性的Nuscenes数据集进行了广泛的实验,证明了我们的观点 - DETR3D与前所未有的作品相比获得了显着改善。值得注意的是,只有5%的标记数据,Point-detr3d的完全超级可见的对应物的性能超过90%。
单眼3D检测(M3D)的目的是从单视图像中进行精确的3D观察定位,该图像通常涉及3D检测框的劳动密集型注释。最近已经研究了弱监督的M3D通过利用许多存在的2D注释来遵循3D注释过程,但通常需要额外的培训数据,例如LiDAR Point Clouds或多视图图像,这些数据会大大降低其在各种应用中的适用性和可用性。我们提出了SKD-WM3D,这是一个弱监督的单眼3D检测框架,利用深度插入以实现M3D,并具有单一视图图像,而无需任何3D注释或其他培训数据。SKD-WM3D中的一个关键设计是一个自我知识的蒸馏框架,它通过融合深度信息并有效地减轻单核场景中固有的深度模棱两可,从而将图像特征转换为3D类似的表示形式,而无需计算上的计算层面。此外,我们设计了不确定性感知的分离损失和梯度定位的转移调制策略,分别促进了知识获取和知识转移。广泛的实验表明,SKD-WM3D明显超过了最新的实验,甚至与许多完全监督的方法相当。
叙事生成吸引了重要的兴趣,作为一种新型的自动化计划技术的应用。ever,可用的大量叙事材料为使用深度学习技术开辟了道路。在本文中,我们使用序列嵌入技术或自动编码器来产生叙事序列,探讨通过自我监督学习的叙事产生的可行性。我们使用叙事计划方法生成的良好图案的数据集,使用先前存在的,已出版的叙事计划域,来培训生成模型。我们的实验证明了生成序列模型的能力,其结构与计划技术获得的结构相似,但与训练集相比具有显着的情节新颖性。最重要的是,生成图具有与基于计划方法中使用的叙事质量度量相关的结构特性。作为基于计划的结构说明了更高水平的因果关系和叙事的一致性,这表明我们的方法能够通过具有相同高级叙事属性的新序列扩展一组叙事。与扩展文本叙述集的方法不同,我们的方法在图结构的层面上运行。因此,它有可能在各种媒体上用于具有显着复杂性的图,最初仅限于以同一叙事类型运行的训练和发电。
目光的估计已成为最近研究日益兴趣的主题。大多数当前方法都依赖于单视面图像作为输入。然而,这些副本很难处理较大的头部角度,从而导致估计的准确性。要解决此问题,添加二视摄像头可以帮助更好地捕获眼睛的外观。但是,现有的多视图方法具有两个限制。1)他们需要培训的多视图注释,这很昂贵。2)更重要的是,在测试过程中,必须知道多个相机的确切位置并与训练中使用的相匹配,这限制了应用程序场景。为了应对这些挑战,我们提出了一种新颖的1视图 - 2视图(1-2视图)适应解决方案,在本文中,无监督的1-2视图适应框架 - 用于注视估计的工作(UVagaze)。我们的方法适应了一个传统的单视凝视估计器,以灵活地放置了双摄像头。在这里,“灵活”意味着我们将双摄像头放在任意位置,而不论训练数据如何,而不知道它们的外部参数。具体来说,乌瓦加兹(Uvagaze)建立了双视图相互监督适应策略,它利用了两种观点之间的凝视方向的内在一致性。以这种方式,我们的方法不仅可以从常见的单视图预训练中受益,而且还可以实现更高级的双视凝视估计。实验结果表明,单视图估计量适用于双重视图,可以获得更高的效果,尤其是在跨数据集设置中,取代率提高了47.0%。项目页面:https://github.com/ mickeyllg/uvagaze。