摘要:了解机器人必须在给定开放式任务中的非结构化环境中操纵对象。但是,现有的视觉负担预测方法通常仅在一组预定义的任务上手动注释的数据或条件。我们介绍了无监督的负担蒸馏(UAD),这是一种将负担知识从基础模型提炼到任务条件的辅助模型的方法,而无需任何手动注释。通过利用大型视觉模型和视觉模型的互补优势,UAD自动注释了一个具有详细的<指令,Visual Profiseance> Pairs的大规模数据集。仅在冷冻功能上训练一个轻巧的任务条件解码器,尽管仅在模拟中接受了对渲染的对象的培训,但UAD对野外机器人场景和各种人类活动表现出显着的概括。UAD提供的可负担性作为观察空间,我们展示了一项模仿学习政策,该政策证明了有希望的概括,可以看到对象实例,对象类别,甚至在培训大约10次演示后进行任务指令的变化。项目网站:https://gpt-affordance.github.io/。
然而,随着这些加速fMRI获取的最新进展[3,4],收购中保存的时间和复杂性已转移到图像重建中。目前,即使在社区中已经开发了现代变异压缩感(CS)重建技术,并且在我们的PYSAP软件[5]中可供选择(请参阅其fMRI 1的插件),但完全重建典型的4D(3D+时间)序列所需的时间预算是100个高分辨率FMRI FMRI FOLUMES架构的典型预算。为了加快这项任务,存在几种竞争方法,要么平行于多个GPU上连续的fMRI体积的重建,要么依靠深度学习在测试时本质上分解MR图像重建的数值复杂性。该博士学位论文将探索第二大道。
人重新识别(REID)旨在在非重叠的摄像机图像中检索相关的人,并且在公共安全领域具有广泛的应用。近年来,随着视觉变压器(VIT)和自我监督的学习技术的发展,基于自我监督的预训练的人的REID的表现得到了极大的改善。人Reid需要提取人体的高度歧视性局部细粒度特征,而传统的VIT则擅长提取与上下文相关的全球特征,从而难以专注于当地的人体特征。为此,本文介绍了最近出现的掩盖图像建模(MIM)自制的学习方法,并通过将掩盖的图像建模和歧视性的损坏性学习和进行训练的人进行训练的任务来有效地提取高质量的全球和本地特征。此人的特征提取方法基于VIT,具有掩盖图像建模(PersonVit)具有无关,可扩展性和强大的概括能力的良好特征,克服了受监督人员REID中难以注释的问题,并在包括MSMT17,Market1501,dukem-comp的公共可用基础数据集中实现了最先进的结果。PersonVit方法的代码和预培训模型将在https://github.com/hustvl/personvit上发布,以促进REID领域的进一步研究。
目的:本研究旨在研究足球运动员中心率变异性(HRV)参数(HRV)参数之间的关系。方法:本研究使用横截面设计来评估18至20岁的29名男运动员的HRV参数,从亚马逊地区的Macapá体育俱乐部团队随机选择。在保持正常呼吸的同时保持正常呼吸的同时保持正常呼吸,并以1,000 Hz的采样率进行了记录,以kubios hrv软件来提取时间域:正常窦间隔的平均值(MRR),正常窦(NN)间隔的标准偏差(sdnn)的标准偏差(sdnn)的平均值,均值(sdnn)的标准偏差(sdnn)的标准偏差(sdnn),均值(sdnn)的平均值(sdnn nnnnnn)。连续正常鼻窦间隔的变化超过50 ms(PNN50),频域:低频(LF),高频(HF)和LF/HF比率参数。然后,使用主成分(PC)提取和Varimax旋转对因子分析进行分析。应用对数转换[通过对数转换(LF/HF Normlog)的归一化LF/HF],用于在因子分析之前解决此非正常性。结果:前两辆PC显示,总方差的87.4%是由原始变量解释的。LF(–0.93),HF(0.93)和LF/HF Normlog(–0.92)参数对PC1有显着贡献,也称为频域分量。相比之下,MRR(0.60),SDNN(0.91),RMSSD(0.89)和PNN50(0.79)参数对PC2有效,也称为时域分量。结论:本研究提供了影响足球运动员HRV参数的自主因素之间复杂关系的宝贵证据。识别与交感神经和副交感活动有关的两台不同的PC突出了监测HRV以优化性能和恢复的重要性。机器学习对于监测控制足球运动HRV的可能分子机制的这些变化很重要。
gpadmapriyame@gmail.com,rajiv5757@yahoo.co.in摘要:现在,一天的在线Web应用程序或在线数据库应用程序越来越多地暴露于各种攻击中。这样的一种窃取数据的攻击称为SQL注入攻击,其中攻击者修改用户启动的SQL查询,并添加恶意代码以访问和操纵Web应用程序或数据库中的信息。防止此类攻击的一种方法是定期更新和测试Web应用程序防火墙(WAF)。由于技术的巨大增长,打算攻击应用程序的攻击者找到了许多进入系统的新方法。在本文中,我们将机器学习的概念与WAF结合起来,从而最大程度地提高了现有系统的有效性。本文采用的方法是无监督的机器学习技术,该技术使用K-均值聚类算法。建议的系统的流量可以给出:最终用户在Web应用程序中进行查询,并提取查询值并将其发送到SQL注入检测器,该检测器提供两层安全性。在第一层安全性中,使用无上下文语法(CFG)创建模式,以用于低级攻击。使用无监督的学习算法对高级攻击的第二层安全性进行了训练。关键字:机器学习,无监督学习,SQL注入,WAF,CFG 1。简介Web应用程序防火墙(WAF)从一系列应用程序层攻击(例如跨站点脚本(XSS),SQL注入和Cookie Disuning等)中,将Web应用程序或在线数据库应用程序中的应用。HTTP应用程序使用Web应用程序防火墙(WAF)作为应用程序防火墙。在HTTP对话中,它应用了一系列规则。通常,这些规则允许跨站点等常见攻击
Gregor Kasieczka教授电子邮件:Gregor.kasieczka@uni-hamburg.de Twitter/X:@Gregorkorkasieczka ML在Hep Workshop,Kek,10.1.2024Gregor Kasieczka教授电子邮件:Gregor.kasieczka@uni-hamburg.de Twitter/X:@Gregorkorkasieczka ML在Hep Workshop,Kek,10.1.2024
我们提出了夹子 - 列表,这是一种通过文本注释来进行视觉表示学习的信息有效方法。与先前提出的剪辑模型相结合,在优化其对比度学习目标的过程中,夹子夹仅需要一个负面图像文本样本对。我们通过提高信息有效下限的优势来实现这一目标,以最大程度地提高两种输入方式之间的相互信息。这允许在相同尺度上比夹子相比,可以通过显着摄入的数据和批量大小进行培训。我们通过在可可扣数据集上进行预处理并测试向其他数据集的转移学习来评估夹列。夹子夹在Pascal VOC分类中获得了 +14.0%的MAP绝对增益,并且在Imagenet上获得了 +22.1%的TOP-1准确性增益,同时是合并或优于其他,更复杂,更复杂的文本监督模型。夹子夹也可以夹在图像和文本检索,零拍零分类和视觉接地上。fi-Nelly,我们表明夹具可以利用语言语义来鼓励可以在下游任务中使用的无偏见的视觉表示。实现:https:// github。com/4m4n5/clip-lite
数据增强方法是手工设计或基于模型的。手工设计的方法,例如视觉效果中的颜色变化和随机裁剪或DNA序列中的突变,需要人类输入,并且通常是特定于数据的,并且与复杂的数据进行了斗争,在这些数据中,小变化显着影响语义。语义与无关的方法(例如添加噪声)存在,但并不总是有效的。此外,手工设计的方法需要更多样本来减轻微妙的语义变化中的风险,这在诸如生物学之类的昂贵域中挑战。使用生成模型(VAE,GAN,扩散)的基于模型的方法改善了视力任务和监督学习的训练,但面临着对多样性,概括和对外部数据的依赖的担忧。
摘要 - 不监督的单眼深度估计框架 - 作品显示出有希望的自主驱动性能。但是,现有的解决方案主要依靠一个简单的召集神经网络来进行自我恢复,该网络努力在动态,复杂的现实世界情景下估算精确的相机姿势。这些不准确的相机姿势不可避免地会恶化光度重建,并误导了错误的监督信号的深度估计网络。在本文中,我们介绍了Scipad,这是一种新颖的方法,它结合了无监督的深度置式联合学习的空间线索。具体来说,提出了一种置信度特征流估计器来获取2D特征位置翻译及其相关的置信度。同时,我们引入了一个位置线索聚合器,该位置线索聚合器集成了pseudo 3D点云中的depthnet和2D特征流入均匀的位置表示。最后,提出了一个分层位置嵌入喷油器,以选择性地将空间线索注入到鲁棒摄像机姿势解码的语义特征中。广泛的实验和分析证明了与其他最新方法相比,我们的模型的出色性能。非常明显的是,Scipad的平均翻译误差降低了22.2%,而Kitti Odometry数据集的相机姿势估计任务的平均角误差为34.8%。我们的源代码可在mias.group/scipad上找到。
摘要 - 视觉探测器(VO)对于自主系统的导航至关重要,以合理的成本提供准确的位置和方向估计。虽然传统的VO方法在某些条件下脱颖而出,但它们会面临诸如可变照明和运动模糊之类的挑战。深度学习的VO虽然更适应性,但在新环境中可能会面临概括问题。解决这些缺点时,本文提出了一种新型的混合视觉探光(VO)框架,该框架利用了姿势的超级视觉,提供了稳健性和对广泛标签的需求之间的平衡解决方案。我们提出了两种具有成本效益和创新的设计:一种自我监管的同谱预训练,用于从唯一的姿势标签中增强光流学习,以及一个随机的基于贴片的显着点检测策略,以进行更准确的光流贴片提取。这些设计消除了对训练的密集光流标签的需求,并显着提高了系统在多样化和挑战性环境中的概括能力。与密集的光学流程监督最终的最新方法相比,在极端和看不见的情况下,在极端和看不见的情况下,在标准数据集以及更大的鲁棒性和概括能力上实现了竞争性能。