苏联的大部分太空计划通常不对外公开。正如本出版物所记录的,苏联在太空领域的大部分努力都用于军事目标。自太空时代开始以来的过去三十年里,苏联一直在稳步努力获得太空军事能力。由于西方民主国家,特别是美国,将其大部分太空资源和技术用于其他目标,有时缺乏明确的目标,我们让苏联危险地接近实现其太空军事目标。苏联人有条不紊地设计了他们的太空系统以在太空中作战。30 多年来,莫斯科一直在稳步努力获得对太空的军事控制能力。正如下面的页面所示,苏联的努力确实令人印象深刻。例如:
玻璃匣子 使黑匣子智能化的尝试 Rohan D’Souza、Sneha Aruldurai、Prajakta Totawar、Anish Poojary、ManitaRajput 电子与电信系 康塞桑·罗德里格斯神父理工学院,瓦希,孟买,印度。1 rohan.dsz18@gmail.com,2 snehaaruldurai@gmail.com,3 totuprajakta@gmail.com,4 anishpoojary92@gmail.com,5 rajputmanita@yahoo.com 摘要 - 每架飞机的尾部都配备了一个黑匣子。黑匣子中的数据在每次飞机失事调查中都起着至关重要的作用。飞行数据记录器 (FDR) 和驾驶舱语音记录器 (CVR) 统称为黑匣子。分析从黑匣子中检索到的数据,有助于空难调查人员了解和研究坠机原因,利用黑匣子的机密数据,飞机设计工程师可以为未来的设计采取必要的预防措施,以避免进一步的飞机事故。如果这个重要的黑匣子没有从坠机现场找回,那么存储在黑匣子中的所有机密数据都会丢失,坠机原因仍是一个谜。在本文中,我们提出了智能黑匣子的设计和实现,它存储了一些重要参数,即高度、压力、温度、俯仰、偏航和滚转。这个智能黑匣子原型通过将数据上传到云服务器,实时将飞机上的传感器和其他装置检测到的所有信息发送到地面站。空中交通管制 (ATC) 可以访问和监控这些信息,并采取支持措施防止任何可能导致坠机的疏忽并防止灾难发生。关键词 -玻璃箱,BMP180,WiFi,空中交通管制 1.简介 近年来,航空业经历了许多飞机事故。2016 年 7 月 22 日,印度空军 (IAF) 战术运输机安东诺夫 An-32 在从钦奈飞往布莱尔港的快递航班上最后一次出现在雷达上是在上午 9:12,当时它离开了二次监视雷达 (SSR) [1] 的范围。这架 IAF 飞机在飞越孟加拉湾时失踪,机上有 29 人。印度空军和印度海军的多架飞机和舰艇正在钦奈以东 150 海里的水域搜寻,这是飞机最后已知的位置。这是印度历史上规模最大的海上失踪飞机搜救行动。2016 年 9 月 15 日,搜救任务被取消。2014 年 3 月 8 日,马来西亚航空 MH 370 航班,一架
摘要——由于人口增长和工业进步,全球对可持续发展的关注度不断上升。因此,人们进行了各种研究,以探索改善环境和利用可再生能源的新趋势。沸石是一种具有分子尺寸微孔的晶体材料。明矾泥是饮用水净化过程中产生的副产品,数量不可避免。本文介绍了沸石用于增强可持续能源存储系统的方法。沸石 (ZSM-12) 是由废明矾泥饼脱水去除多余水分后热分解合成的。ZSM-12 是一种高硅沸石,是一种通过相变材料 (PCM) 增强潜热储能介质的先进应用。进行了包括 XRD (X 射线衍射仪) 和 SEM (扫描电子显微镜) 在内的微观测量,以检查改性明矾泥中沸石 (ZSM-12) 的存在。在中试规模的太阳能存储系统中,添加含沸石的明矾泥 (AS) 的相变材料 (PCM/AS/ZSM-12) 的热性能比纯 PCM 提高了 15%,储存热量达到 89 kJ,而基于石蜡的纯 PCM 的储存热量为 7 kJ。
摘要尽管越来越多地研究兴趣,但现有的定向灰色盒模糊剂并不能很好地扩展程序复杂性。在本文中,我们确定了当前有向灰色盒子模糊的两个主要可扩展性挑战。特别是,我们发现传统的覆盖反馈并不总是为达到目标计划点提供卑鄙的指导,并且现有的种子距离机制在具有复杂控制结构的程序中不能很好地运行。为了解决这些问题,我们提出了一个新颖的魔力,名为dafl。dafl选择与目标局部相关的代码零件,并仅从这些部分获得覆盖反馈。此外,考虑到程序执行的数据流语义,它计算精确的种子距离。结果是有希望的。在41个现实世界中,DAFL能够在给定时间内添加4、6、9和5个错误,分别与AFL,AFLGO,Windranger和Beacon相符。此外,在所有模糊剂产生中位数TTE的情况下,DAFL的平均速度至少要快4.99倍,而包括Aflgo,Windranger和Beacon在内的3个最先进的定向绒毛。
*21Z-00Z 框中的孤立 TSRA* **预计雷暴期间及附近将出现冰雹、严重湍流和结冰、强降水、闪电和风切变。**
背景。日冕环是太阳高层大气的基本构成要素,在极紫外和 X 射线中可见。了解日冕环如何产生能量、构造和演化是理解恒星日冕的关键。目的。我们在此研究光球磁对流如何产生加热日冕环的能量,并将其传输到高层大气中,以及日冕磁环的内部结构如何形成。方法。在 3D 磁流体动力学模型中,我们使用 MURaM 代码研究了一个孤立的日冕环,其两个足点都位于对流区内的浅层中。为了解决其内部结构,我们将计算域限制为一个矩形框,其中包含一个日冕环作为拉直的磁通量管。考虑了场对准热传导、光球层和色球层的灰辐射传输以及日冕中的光学薄辐射损失。足点被允许与周围的颗粒物自洽地相互作用。结果。环被坡印廷通量加热,该通量是通过光球中单个磁场浓度的小尺度运动自洽产生的。由于足点运动,大气上层形成了湍流。我们几乎看不到来自给定足点的不同光球浓度的磁通量管大规模编织加热的迹象。合成发射,就像大气成像组件或 X 射线望远镜所观察到的那样,揭示了响应加热事件而形成的瞬态亮线。总体而言,我们的模型粗略地再现了在日冕环(子结构)内观察到的等离子体的性质和演化。结论。利用这个模型,我们可以建立一个连贯的图像,展示加热太阳表面附近高层大气的能量通量是如何产生的,以及这个过程是如何驱动和控制日冕环的加热和动态的。
海洋循环对地球的气候产生了很大的影响,尤其是通过将热量运送到欧洲。淡水供应向北大西洋和北欧海洋的变化已被认为在海洋循环发生变化背后具有驱动作用,从而导致了过去的气候变化。这一直是令人关注的原因,并且广泛讨论了当前大西洋子午翻转循环的崩溃。提示突然的气候变化的建议理论是Stommel的经典盒子模型,它连接到热盐循环。热盐循环与密度差异有关,并通过影响温度和盐度的物理过程维护。源自温度和盐度对驾驶密度差异有相反的影响,斯梅尔的理论解释了可能的含义,例如不同的海洋循环系统,这可能是稳定或不稳定的。本文涉及淡水供应如何影响热盐循环。Stommel关于海洋系统双重稳定性的理论应用于热盐循环和古气候。Stommel的理论可以解释在年轻的Dryas时期的海洋循环的“关闭”,从而引起准周期性的Dansgaard-Oeschger事件,并以半球之间的Seesaw效应。总而言之,斯梅尔的简单盒子模型为热盐囊性提供了概念图,这可能是过去气候变化的关键因素,但在不久的将来不太可能导致突然的变化。
十年后,当时就职于贝尔实验室的美国数学家彼得·肖尔 (Peter Shor) 设计出了最早的量子算法之一。对于传统(非量子)计算机来说,将两个数字相乘很容易,但执行逆运算(将数字分解为因数)却非常困难。事实上,随着数字越来越大,这个问题很快就会变得难以解决。这个问题非常困难,以至于现代数据加密利用了这种难解性来保护我们的信息。不幸的是,肖尔利用量子力学的特性发现了一种量子算法,可以大大加快这个逆问题的求解速度。一旦我们制造出足够强大的量子计算机来运行它,这一发现就会使当今的数据安全面临风险。
3. 只有通过西伯利亚至西欧管道增加天然气出口才能防止苏联硬通货在 80 年代大幅下降。苏联几乎肯定能够按计划通过管道输送天然气,而无需将苏联设备从国内用途转移。足够的设备已经交付或即将交付,使苏联能够满足西欧对天然气的可能需求,直到 80 年代末。到那时,莫斯科可能能够生产足够的现代涡轮机和压缩机,使管道达到满负荷状态,或者将找到新的设备来源,以弥补因美国行动而可能损失的任何设备。履行天然气交付承诺并在涡轮机和压缩机方面实现自给自足将使苏联在效率低下以及资源和努力转移方面付出代价。