hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:驾驶舱监控不力已被确定为导致航空事故的重要因素。因此,改进飞行员的监控策略有助于提高飞行安全性。在两个不同的环节中,我们在全飞行模拟器中分析了专业航空公司飞行员的飞行性能和眼球运动。在预训练环节中,20 名飞行员以飞行员飞行 (PF) 的身份执行了手动进近场景,并根据其飞行性能分为三组:不稳定、标准和最准确。不稳定的飞行员对各种仪器的关注不足或过度。他们的视觉扫描模式数量低于设法稳定进近的飞行员。最准确的飞行员表现出更高的感知效率,注视时间更短,对重要主要飞行仪表的注视更多。大约 10 个月后,14 名飞行员返回进行后续训练。他们接受了一项短期培训计划,并执行了与预训练课程类似的手动方法。其中七人(实验组)收到了关于他们自己的表现和视觉行为(即在预训练课程期间)的个人反馈,以及从最准确的飞行员那里获得的各种数据,包括一段眼动追踪视频,其中显示了最准确的飞行员之一的有效视觉扫描策略。另外七人(对照组)收到了有关驾驶舱监控的一般指导。在训练后阶段,实验组的飞行表现更好(与对照组相比),其视觉扫描策略与最准确的飞行员的视觉扫描策略更加相似。总之,我们的结果表明,驾驶舱监控是手动飞行性能的基础,并且可以使用主要基于高度准确的飞行员的眼动示例的训练计划来改进它。
Apple Vision Pro 和 Meta Quest Pro 等眼动追踪混合现实头戴设备已将眼动追踪推向主流。截至撰写本文时,消费级混合现实 (XR) 产品通常将眼动追踪用于两个主要目的。首先,Vision Pro 将目光注视和手指捏合 [ 11 , 12 ] 作为其主要输入模式。其次,VRChat 等社交 XR 应用可以使用目光注视数据在虚拟形象中实现准确的目光表现和目光接触 [ 1 ]。这些机制通常将瞳孔位置数据作为输入,并产生光线投射或虚拟形象运动作为输出。然而,目光注视和人类心理学之间的深厚联系可以使研究方向超越显式位置输入。传统上,HCI 专注于显式输入领域的眼动追踪——用于交互或运动追踪的位置数据。在系统综述中,Vasseur 等人 2019 年 9 月发表了一篇系统综述,介绍了一种用于追踪眼动追踪的眼动追踪方法。 [ 13 ] 发现大多数眼动追踪研究传统上都是使用桌面设置进行的,并建议将眼动追踪人机交互扩展到新的指标、分析和设备中。心理生理学领域率先使用可观察的物理数据来揭示人类的认知过程。眼球运动和特征以及心跳、脑电波和荷尔蒙变化等其他指标已被用来得出有关用户行为和认知状态的结论。可观察的认知行为可以包括有目的的(有意识的)状态和冲动的(无意识的)状态 [ 3 ]。此外,可测量的认知还可以包括一般的个人现象,如学习、反思、情感和记忆。凝视数据可以预测疲劳、注意力、分心和走神等认知状态 [ 9 ]。除了瞳孔扩张和眨眼率可以 61% 的准确率预测用户的困惑之外 [ 5 ],瞳孔大小还与
正是基于同样的关注,我们将目光投向未来,该战略计划反映了 RANZCOG 所处的不断变化的世界——社会、政治、经济和监管环境(既有历史的也有当代的),指导着其战略方向和活动。
通过采用教学的观点,玛莎·努斯鲍姆(Martha Nussbaum)指出:“有必要培养学生的内在目光,这意味着对信件和艺术的教育,使学生与性别问题,繁殖,种族,种族”接触。”这导致对维度的理解:
左:眼睛跟踪器摄像机拾取用户的目光。右:使用目光来控制打字应用程序。已经提出了几种遏制MIDAS触摸问题的方法。一种方法是选择注视,但不能激活接口元素。一个典型的例子是使用自愿眨眼来确认基于目光的选择。,但这假定眼睛始终是自愿的。第二种方法是测量用户眼睛的总时间在接口元素中(“ dell Time”)(Jacob和Stellmach,2016年)。如果停留时间超过一定的阈值值,则该元素将被激活。选择阈值大于典型的眼固定持续时间。这种方法的问题是没有固定的固定时间表明用户的意图。第三种方法是具有凝视驱动的光标(“凝视鼠标”)并进行鼠标点击以确认选择(Kasprowski等,2016)。,但这不是免提解决方案。第四种方法是双重视线方法(Mohan等,2018),在这种情况下,用户凝视着他/她想要
FPGA 加速卷积神经网络已经被人们广泛研究 , 大部分设计中最终性能都受限于片上 DSP 数量 . 因 此 , 为了进一步加速 FPGA, 人们开始将目光移向了快速算法 . 快速算法能够有效降低卷积操作的乘 法次数 , 提高加速比 , 相比于非快速算法 , 快速算法需要一些额外的操作 , 这些操作大部分都是常数乘 法 , 在硬件实现过程中 , 这些常数乘法会被转换为多个位运算相加的操作 , 位运算可以不需要消耗片上 的 DSP 资源 , 仅使用 LUT 阵列就可以实现位运算 . 从近两年的研究现状来看 , 基于快速算法的工作 在逻辑资源使用方面确实要高于非快速算法的工作 . 此外 , 快速算法是以一个输入块进行操作 , 因此对 于片上缓存的容量要求更高 . 并且快速算法加快了整体的运算过程 , 因此对于片上与片外数据带宽需 求也更大 . 综上所述 , 快速算法的操作流程异于传统的卷积算法 , 因此基于快速算法的新的 FPGA 架 构也被提出 . 第 4 节将会简述国内外关于 4 种卷积算法的相关工作 .
妇女家庭科学与高等教育研究所,印度泰米尔纳德邦哥印拜陀摘要:该系统通过利用眼睛追踪技术的力量来无缝控制家庭用具,从而彻底改变了瘫痪者的生活。利用OPENCV进行鲁棒和实时的眼动追踪,该系统通过专注于预定义的模式或命令,使患者能够轻松地与周围环境互动。用户友好的界面促进了眼动与各种家用设备(包括灯光,风扇和娱乐系统)之间建立连接。这种创新的解决方案赋予了机动性有限的个人重新获得独立性的能力,通过基于直觉的目光命令简化了日常工作和生活空间的管理。通过提供一种新颖的沟通和控制途径,该系统为瘫痪的患者提供了一种新的自主性,便利性和改善的生活质量。索引术语:瘫痪,眼睛跟踪技术,OPENCV,预定义的模式或命令,家用设备,基于目光的控制。
并增加呼吸频率 如果需要,寻求帮助 保持冷静,慢慢轻声说话 当别人生气时,不要反驳他们 不要靠近顾客 避免身体语言,如交叉双臂、双手叉腰或摇晃手指 避免直接目光接触 如果你可以离开,慢慢后退并离开场所 如果你受伤,寻求医疗救助,通知你的主管并联系