摘要:路径计划对于机器人技术至关重要,使机器人可以从其当前位置到目标位置找到无碰撞的路线。人造潜力领域(APF)方法利用有吸引力的排斥性领域来指导机器人朝目标,同时避免障碍物。但是,由于局部最小值,常规APF的排斥潜在方程可能会产生次优的结果。为了解决这个问题,引入了一种称为多目标进化性人工电位场(MOE-APF)的新颖方法。MOE-APF修改了排斥电势方程,并采用膜计算和遗传算法(GA)来优化一组新的APF参数。健身函数考虑了多个目标:路径长度,平滑度,成功率和安全性。与最新方法的比较称为膜进化性人工电位场(MEMEAPF)表明,MOE-APF显着提高了各种环境之间的路径质量,优化时间和成功率。MOE-APF的多功能性使其能够应对涉及非全面机器人,多个机器人,工业操纵器和动态障碍的路径规划挑战。
机器人臂是由连接接头连接的链路的移动链组成的设备。电动机经常用于移动每个机器人臂接头。可以在空间中自由移动的最终效应器通常连接到固定的机器人平台的一端。机器人武器可以以速度和精度进行重复操作,远远超过了人类操作员。如今,机器人臂系统在全球范围内广泛使用,以提高行业制造过程的质量和效率。 机器人臂系统的典型应用是组装,绘画,焊接,拾取和放置操作等。 此外,许多行业都采用机器人武器来从事各种工作,例如选择和推杆,绘画和材料处理。 但是,完成这些工作的最具挑战性的问题之一是确定机器人部门最终效力器的目标位置。 有两种分析机器人臂运动的方法:前进和逆运动分析。 基于Visual Servo算法,本研究使用反向运动学来执行挑选和放置操作。 首先,实现了一种对象识别算法来识别要掌握的对象。 然后,避免发生任何障碍的算法。 研究的发现表明,在所有三种算法中都获得了良好的系统性能:首先,对象识别算法,第二,障碍避免算法,最后是基于Visual Servo的挑选和位置操作。 因此,可以得出结论,机器人臂的视觉伺服算法适用于采摘应用。如今,机器人臂系统在全球范围内广泛使用,以提高行业制造过程的质量和效率。机器人臂系统的典型应用是组装,绘画,焊接,拾取和放置操作等。此外,许多行业都采用机器人武器来从事各种工作,例如选择和推杆,绘画和材料处理。但是,完成这些工作的最具挑战性的问题之一是确定机器人部门最终效力器的目标位置。有两种分析机器人臂运动的方法:前进和逆运动分析。基于Visual Servo算法,本研究使用反向运动学来执行挑选和放置操作。首先,实现了一种对象识别算法来识别要掌握的对象。然后,避免发生任何障碍的算法。研究的发现表明,在所有三种算法中都获得了良好的系统性能:首先,对象识别算法,第二,障碍避免算法,最后是基于Visual Servo的挑选和位置操作。因此,可以得出结论,机器人臂的视觉伺服算法适用于采摘应用。
摘要:本文考虑了水下目标的定位,其中放置了许多声纳浮标来测量目标声音的方位。声纳浮标的方位精度非常低,例如 10 度。在实践中,我们可以使用多个异构声纳浮标,这样传感器噪声的方差可能与另一个传感器的方差不同。此外,一个传感器的最大感应范围可能与另一个传感器的最大感应范围不同。如果传感器检测到目标的方位,则真实目标必须存在于传感器的感应范围内。为了基于低精度的方位测量来估计目标位置,本文介绍了一种基于多个虚拟测量集 (VMS) 的新型目标定位方法。这里,每个 VMS 都是考虑到每个声纳传感器的方位测量噪声而得出的。据我们所知,本文在考虑传感器的最大感应范围的情况下,基于低精度的异构声纳浮标传感器对目标的 2D 位置进行定位方面是新颖的。通过使用计算机模拟将所提出的定位方法与其他最先进的定位方法进行比较,验证了所提出的定位方法的优越性(同时考虑时间效率和定位精度)。
摘要:机载合成孔径雷达(Airborne Synthetic Aperture Radar,Airborne SAR)利用机载定位定向系统(POS)获取的飞行器飞行参数以及飞行器与目标的相对位置信息,对重点目标及区域进行精确定位。飞行过程中,飞行器会因为大气湍流等原因偏离理想飞行路径,导致计算结果与实际目标位置出现偏差。为了提高目标定位精度,需要研究飞行器运动误差对目标定位误差的影响。本文从线性距离-多普勒算法(RDA)的角度探讨了单视机载SAR的定位精度,并在多视机载SAR定位模型的基础上,推导了多视机载SAR定位误差传递模型。在此基础上,详细分析了影响两种定位方法定位精度的主要因素,定量揭示了多视角机载SAR定位方法较单视角机载SAR定位方法提高目标定位精度的机理,解决了多视角机载SAR优化定位的航向规划问题。研究成果可为定位误差影响因素分析及机载SAR定位误差校正提供理论支撑。
抽象无人机技术正在迅速发展,并且在培养操作过程中代表了显着的好处。本文提出了一种新型的方法,用于无人驾驶汽车(无人机)的自主装修任务。提议的无人机框架由一个本地规划师模块组成,该模块发现了无障碍物的路径,可以将车辆引导到目标区域。检测到目标点后,无人机计划采用最佳轨迹,以进行灭火球的精确弹道发射,从而利用其运动学。生成的轨迹最小化了整体遍历时间和最终状态误差,同时尊重无人机动态限制。在模拟和实际测试中都评估了所提出的系统的性能,并具有随机定位的障碍物和目标位置。该拟议框架已在国际无人飞机系统会议(ICUAS)的2022年无人机竞争中采用,在该竞赛中,它在模拟和实际情况下,在越来越多的困难越来越多的困难中成功完成了任务,从而在整体上获得了第三名。本文的视频附件可在网站上https://www.youtube.com/watch?v=_hdxx2xxkvq。
摘要:本文考虑了水下目标的定位,其中放置了许多声纳浮标来测量目标声音的方位。声纳浮标的方位精度非常低,例如 10 度。在实践中,我们可以使用多个异构声纳浮标,这样传感器噪声的方差可能与另一个传感器的方差不同。此外,一个传感器的最大感应范围可能与另一个传感器的最大感应范围不同。如果传感器检测到目标的方位,则真实目标必须存在于传感器的感应范围内。为了基于低精度的方位测量来估计目标位置,本文介绍了一种基于多个虚拟测量集 (VMS) 的新型目标定位方法。这里,每个 VMS 都是考虑到每个声纳传感器的方位测量噪声而得出的。据我们所知,本文在基于低精度的异构声纳浮标传感器定位目标的 2D 位置方面是新颖的,考虑到传感器的最大感应范围。通过使用计算机模拟将所提出的定位方法与其他最先进的定位方法进行比较,验证了所提出的定位方法的优越性(同时考虑时间效率和定位精度)。
摘要:随着自动化和情报行业的快速发展,机器人最终效应器的性能直接影响机器人系统的运行效率和应用范围,因此其研究和优化尤为重要。这项研究首先通过系统分析在不同的应用程序场景中确定了现有机器人最终效应器设计的性能瓶颈和局限性。然后,使用模块化设计方法开发了一种新型的执行器原型,并结合了最新的材料科学研究和机电一体化整合技术。在实验验证阶段,通过比较和测试新设计和旧执行器在关键绩效指标(例如精度,响应速度和负载能力)中的性能来确认新设计的有效性。平均偏差通常很低,大部分在0.05至0.09毫米之间,表明执行器可以在大多数情况下准确地定位预设目标位置。这项研究的价值在于,提出的最终效应器设计方案不仅改善了机器人的运营性能,而且具有良好的普遍性和适应性,为机器人技术的未来开发奠定了坚实的基础。这些成就有望大大促进机器人技术在制造,医疗保健和服务等行业中的广泛应用,并提高整个行业的自动化水平。
摘要 - 智能机器人技术在维护,维修和大修(MRO)机库操作方面具有重要意义,其中移动机器人可以在其中导航复杂而动态的环境,以进行飞机视觉检查。飞机机库通常忙碌而变化,形状和尺寸各不相同,呈现出严格的障碍物和条件,可能导致潜在的碰撞和安全危害。这使得障碍物检测和避免对安全有效的机器人导航任务至关重要。常规方法已在计算问题上应用,而基于学习的方法的检测准确性受到限制。本文提出了一个基于视觉的导航模型,该模型将预训练的Yolov5对象检测模型集成到机器人操作系统(ROS)导航堆栈中,以优化复杂环境中的障碍物检测和避免。该实验在ROS-Gazebo模拟和Turtlebot3 Waffle-Pi机器人平台中进行了验证和评估。结果表明,机器人可以越来越多地检测并避免障碍物,而无需碰撞,同时通过不同的检查点导航到目标位置。关键字 - 自主导航,对象检测,避免障碍物,移动机器人,深度学习
摘要:缺乏直观和活跃的人类 - 动物相互作用使使用上肢辅助设备很难。在本文中,我们提出了一个基于学习的新型控制器,该控制器直觉地使用发作运动来预测辅助机器人所需的终点位置。实施了一个由惯性测量单元(IMU),肌电图(EMG)传感器和机械学(MMG)传感器组成的多模式传感系统。该系统用于在达到五个健康受试者执行的任务期间获取运动学和生理信号。提取了每个运动试验的开始运动数据,以输入传统的回归模型和训练和测试的深度学习模型。模型可以预测手在平面空间中的位置,这是低级位置控制器的参考位置。结果表明,使用IMU传感器与提出的预测模型具有足够的运动意图检测,与添加EMG或MMG相比,该模型可以提供几乎相同的预测性能。此外,基于复发的神经网络(RNN)模型可以在短发时间窗口中预测目标位置以进行动作,并且适合在更长的视野上预测目标的目标。这项研究的详细分析可以提高辅助/康复机器人的可用性。
摘要 - 在障碍物周围执行各种自动化任务时,对移动机器人的安全和平滑的运动控制至关重要,尤其是在人和其他移动机器人的情况下。移动机器人在朝着指定的目标位置迈进时使用的总转弯和空间在确定所需的控制工作和复杂性方面起着至关重要的作用。在本文中,我们考虑了基于角度反馈线性化的标准独轮车控制方法,并提供了一种明确的分析措施,以根据独轮车状态和控制收益来确定在独轮车控制过程中的总转盘。我们表明,与线性控制增益相比,可以选择更高的角度控制增益来避免围绕目标位置的不希望的螺旋振荡运动。相应地,我们使用总的转弯努力建立了在闭环独轮车轨迹上结合的准确,明确的三角运动范围。运动范围预测的提高精度是由于对独轮车状态和控制参数的更强依赖性而产生的。要比较替代循环,圆锥和三角运动范围预测方法,我们介绍了提议的独轮车运动控制和运动预测方法的应用,用于在数值模拟中围绕障碍物围绕障碍物进行安全的独轮车路径。