摘要:基于受体的生物传感器的性能通常受到分析物的扩散,导致不合理的长期测定时间或缺乏特异性限制了由于非特异性结合的噪声而引起的灵敏度。交替的电流(AC)电动物及其对生物传感的影响是一个专门解决此问题的研究领域,可以通过电热效应,电流或电介型(DEP)来改善分析物的传质。因此,由于使用这些技术的提高了传质,因此已经显示出提高灵敏度,并通过数量级降低了测定时间。在具有现实样品基质避免非特异性结合的真实样品中实现高灵敏度至关重要,并且理想情况下,改进的传质应针对目标分析物。在本文中,我们介绍了将生物传感器与DEP相结合的方法,这是AC动力学方法具有最高的选择性。我们得出的结论是,尽管与许多挑战相关联,但对于多种应用,该方法可能是有益的,尤其是如果更多的工作致力于最大程度地减少非特异性绑定,DEP提供了
摘要研究是学者的组成部分,也是创新的一部分,因为除了通过研究工作,无法实现新的理由。必须对研究工作进行适当的分析和介绍,以使读者和研究人员对工作有足够的了解。本研究将研究研究是任何对任何专业或纪律至关重要的学科的重要组成部分。它将提供并产生知识,以理解并与技能相结合以导致有效的行动。这也是一个系统的,目标分析和受控观察的记录,可能导致概括,原理,理论的发展,导致对许多事件的预测和最终控制,这些事件可能带来特定活动的后果或原因。通过调查研究方法,结合了研究工作的分析,该研究将采用横断面调查研究描述,样本量将基于收集的数据概念和分析的数据。将检查各种数据收集技术,该研究将进一步研究数据分析的各种方法或技术,以及在研究工作过程中呈现和处理数据的各种方法,其唯一目的是为知识的身体做出贡献。研究将进行
技术信号分析师的职责可能包括: - 利用对信号特性的技术理解来确定信号结构、定义信号参数、识别信号内容以及在射频和数字域内模拟信号行为。 - 在域之间转换信号,并创建处理模型和脚本。 - 报告信号的技术特性并维护知识库。 - 支持访问和后续分析活动。 - 分析与武器和空间系统有关的工程和技术信息。 - 进行目标分析和研究。 - 利用对客户要求的了解来收集、处理、分析和/或报告信号情报信息。 - 识别和分析信号波形(例如武器系统或通信系统)、比特流(例如多路复用器、纠错或仪器系统)和/或协议(例如链路层、网络层或应用层)。 - 开发软件代码以支持使用各种架构和解决方案进行分析和/或处理。 - 在数据库、叙述报告和口头陈述中报告信号参数数据和情报信息。 - 与收集经理、开发人员、分析师和记者合作,优化资源,开发新的解决方案来应对分析挑战,融合多种信息源,并向各种客户提供关键情报。
5 “CHIPS 激励计划下现有半导体制造设施现代化和内部扩建的程序性环境评估 (PEA) 草案”,美国商务部 CHIPS 计划办公室,2023 年 12 月,第 B-7 页,https://www.nist.gov/system/files/documents/2023/12/26/CHIPS%20Modernization%20Draft %20PEA.pdf 6 “PFOS 和 PFOA 转化为半导体制造中使用的短链 PFAS 含材料”,SIA PFAS 联盟,2023 年 6 月 5 日,第 11 页。 7 Paige Jacob、Kristas Barzen-Hanson 和 Damian Helbling,“电子制造设施废水中全氟和多氟烷基物质的目标和非目标分析”,环境科学与技术,2021 年 2 月 16 日,第2353. https://pubs.acs.org/doi/10.1021/acs.est.0c06690 。本研究由半导体行业赞助 8 “方法 1621:通过燃烧离子色谱法测定水基质中的可吸附有机氟 (AOF)”,美国环保局水务办公室,2024 年 1 月,第 1 页,https://www.epa.gov/system/files/documents/2024-01/method-1621-for-web-posting.pdf
摘要:随着气候变化及其后果的越来越明显,有记录的记录和封闭,在报告,连续的国际协议以及定期举行的气候峰会上,实现气候目标正在成为人类面临的最重要挑战之一。本文背后有两个原因:首先,关于不仅要披露主要气候目标,而且还披露中间气候目标的必要性的越来越频繁的要求;而且,从我们以前出版物中提出的环境管理系统框架内的环境目标分析中得出的结论。无疑有许多因素影响了气候目标的实现,但是由于多种原因,它们对实施这些目标的影响的实力差异很大。本评论试图确定实现气候目标的主要障碍,尤其是在组织环境中的气候目标,而无需诉诸于应用概念或管理系统中的复杂目标设定。本文的重点是缺乏实现中间气候目标的统一政策,因此是主要目标;公众对风险意识的重要性;短期观点的主导地位,缺乏统一立法和单一市场的结论,气候不平等和气候不公的重要性以及相关的资源和政治约束。
摘要:霉菌毒素是可能污染食物和饮料的霉菌代谢物。由于它们的急性和慢性毒性,摄入或吸入时可能会产生有害影响,从而对人类健康构成严重风险。当代分析方法具有污染检测和定量所需的灵敏度,但是由于基质复杂性,需要直接应用这些方法在实际样品上,并且需要越来越多的清理和预浓缩步骤,越来越多地需要应用高度选择性的固相萃取材料。分子印迹聚合物(MIP)是人工受体,模仿了天然抗体,这些抗体越来越多地用作提取方法的固相,其中对目标分析物的选择性是必不可少的。在这篇综述中,将讨论有关分子不可分割的聚合物作为霉菌毒素污染分析中的固相提取材料的最先进的,特别是要注意模拟分子在合成霉菌毒素图像量的材料合成中的使用,以将这些材料应用于这些材料,以将这些材料应用于实际样品,以实现真实的样品进行了跨越型分析。
2004 年开展的 CCQM 试点研究由三部分组成:CCQM-P31a 有机溶液 - 多环芳烃 (PAH)、CCQM-P31b 有机溶液 - 多氯联苯 (PCB) 同类物和 CCQM-P31c 有机溶液 - 氯化农药。CCQM-P31c 氯化农药研究结果总结如下。在 2004 年 4 月的有机分析工作组 (OAWG) 会议和 2004 年 10 月的 OAWG 会议(北京 2004)上审查了 P31c 结果后,决定继续进行溶液中氯化农药的关键比较研究 (CCQM-K39),同时进行溶液中氯化农药的第二项试点研究 (CCQM-P31c.1)。氯化农药是人为化合物,在停止使用后多年仍会残留在环境中,特别是在亲脂性基质中。四种农药是研究的目标分析物:林丹(γ-HCH);4,4'-DDE;4,4'-DDT;和反式九氯。目标农药中有三种是之前研究的目标化合物(CCQM-K5 鱼油中的 4,4'-DDE、CCQM-P10 鱼油中的γ-HCH 和 CCQM-K21 鱼油中的 4,4'-DDT)。反式九氯被选为氯丹系列农药的代表。
摘要:本研究关注的是读心术机器将如何连接起来,最初是通过弱人工智能,然后是与强人工智能相结合,这一方面将不再像现在这样具有简单的医疗作用,而是监视和监控个人——这一方面正引领我们走向未来的技术全景奇点。因此,本文的总体目标是提出人性的本体论稳定性问题,在读心术机器的技术奇点范围内,这会导致自主性的丧失和人类思想自由度的降低。在这个范式中,未来技术奇点时代的假设被预示为各种因素的累积,其中人工智能在人类监督的技术全景系统中以权力表现/施加的新世界秩序的形式相对于人类主体占据主导地位——即“单例”。理论目标分析了福柯全景机制(Foucault,1995、2003、2006、2008)的“去领土化”现象(Deleuze & Guattari,2000、2005)——该机制基于“生物权力”的“生命政治”体系——及其在技术全景奇点“领土”中的“再领土化”,其中强人工智能“单例”场景(Bostrom,2004、2006)代表了存在向硬技术决定论的异化。
摘要 对基于固相萃取 (SPE) 液相色谱-串联质谱 (LC-MS/MS) 的分析方法进行了优化和验证,该方法用于测定城市污水中的五种非法药物,即苯丙胺 (AM)、甲基苯丙胺 (MA)、3,4-亚甲二氧基甲基苯丙胺 (MDMA)、3,4-亚甲二氧基苯丙胺 (MDA) 和吗啡 (MOR)。样品前处理采用 Oasis MCX SPE 小柱。液相分离采用 Zorbax Eclipse Plus C 18 RRHD 柱进行。校准曲线的线性范围为 5 ng/mL 至 250 ng/mL,测定系数 (R 2 ) 大于 0.99,吗啡除外。目标分析物的平均回收率为 91.6% 至 112%,该方法具有良好的日间重复性(变异系数 CV 为 2% 至 19%)。AM、MA、MDMA、MDA 和 MOR 的检测限 (LOD) 分别为 0.29、0.37、0.86、1.09 和 7.56 ng/mL。该方法应用于彭亨州关丹污水处理厂收集的城市污水样品,其中所有 3 个样品均检测到了 AM、MA 和 MDA。关键词:苯丙胺、非法药物、LC-MS/MS、甲基苯丙胺、城市污水
摘要:甲状腺激素的测定对于甲状腺功能亢进症和甲状腺功能减退症疾病的疾病具有实际临床意义。考虑到这一方面,已经开发了包括免疫测定,化学发光,质谱和高性能液相色谱等广泛的分析方法。这种类型的分析提供了可行的结果。尽管如此,它需要合格的员工,特殊设施,并且耗时。因此,本文依赖于用喷墨打印技术开发的电化学设备的制造,以免费检测甲状腺素(T4)。为了制造我们的电化学设备,从扩增电信号的材料的使用中考虑了几个方面,到找到对目标分析物具有亲和力的超分子支架以及对电极表面上分析物的需求。对于此任务,用混合纳米材料修改了印刷设备,该混合纳米材料由氧化石墨烯(RGO)组成,该氧化石墨烯(RGO)用Au纳米颗粒(AU – NP)和包裹剂和不同的Thiolate Cyclodextrins(X – CD-SH)作为携带剂。分析物通过超分子化学的化学预召集,因为环糊精和激素之间的包含复合物形成。形态学和电化学表征,以确保电极的正确可行性,从而达到出色的响应,灵敏度和检测极限(LOD)。