g. 尾流湍流间隔要求详见 RA3277。当飞机按照目视飞行规则飞行,且似乎不太可能存在适合飞行最后进近阶段的最小间隔时,管制员应告知飞行员“注意尾流湍流;建议距离为 (number) 英里”。为了减少 RT,同一尾流湍流类别的军用飞机之间将省略此传输。(“小”尾流湍流类别中两架飞机之间的建议距离为 3 海里。)
产品描述 L3Harris ROVER 6Sx 收发器专为空中、地面和海上使用而设计,可提供实时全动态视频 (FMV) 和其他网络数据,用于态势感知、瞄准、战斗损伤评估、监视、中继、车队监视操作和其他需要目视目标的情况。 ROVER 6Sx 收发器有两个接收通道。这种频率和空间分集提供了链路冗余、强大的接收能力以及对平台阴影、多径干扰、视线阻塞和射频干扰的弹性。
为了减少对易出错的目视检查和现场检查的依赖,A*STAR 的研究人员开发了一种用于检测飞机表面缺陷的自动化系统。该系统使用机器人或摄像头从不同角度捕捉飞机图像。然后,机器学习算法处理这些图像,从这些图像中检测出各种缺陷。该系统还会定位这些缺陷,将它们映射到 3D 模型上,以可视化飞机表面的缺陷。然后,检查员可以对这些捕获的缺陷进行有针对性的检查和验证。
目标:检查机组在最后进近和意外复飞机动过程中的表现和目视扫描。背景:事故和事件分析表明,复飞程序通常由于其复杂性、高时间压力以及发生频率低而无法完美执行,从而没有太多时间进行练习。我们希望通过实验来检验这一点,并确定飞行性能和目视扫描中的错误频率和性质。方法:我们收集了 12 名机组人员的飞行性能(例如程序错误、过度飞行偏差)和眼动追踪数据,这些机组人员在逼真的全飞行运输类模拟器中执行最后进近和复飞飞行阶段。结果:飞行员表现结果显示,三分之二的机组人员在复飞期间犯了包括严重轨迹偏差在内的错误,这是事故的前兆。眼动追踪分析显示,交叉检查过程并不总是能够有效地检测到发生的飞行路径偏差。眼部数据还突出了两个飞行阶段中两名机组人员之间的不同视觉策略。结论:这项研究表明复飞是一项具有挑战性的操作。它展示了眼动追踪的优势,并表明它是复飞期间注意力分配的明确训练以提高飞行安全性的宝贵工具。
制定空中交通管制服务和程序的通用空中交通规则和运行规定,并修订实施条例 (EC) No.1035/2011 和法规 (EC) No.1265/2007,(EC) 号1794/2006,(EC) 号730/2006,(EC) 号1033/2006 和(欧盟)编号255/2010(橙汁2012 年 10 月 13 日的 L 281,第 1 页,2013 年 5 月 31 日的 L 145,第 38 页),包括适用于根据目视飞行规则的航班的空中交通规则;
1.2 为了促进更有效更灵活地使用 G 类空域,当需要 HRA 进行单独的军事作战训练时,国防部低空飞行预订小组 (LFBC) 将通知民航局空域管理部门。然后,将根据《2016 年航空航行命令》第 239 条重新建立限制空域一段时间。将制定新的法定文书,并通过 J 系列 NOTAM 公布限制通知。当 HRA 未启用时,提醒空域用户,他们仍可能在低空飞行区 (LFA) 14T 内遇到以目视飞行规则低空飞行的快速喷气式飞机。
摘要:航空业第四次工业革命——航空 4.0 中宣布的新型先进智能技术代表了飞机维护流程中的新可能性和巨大挑战。这些技术的主要优点是可以监控、传输、存储和分析大量数据集。根据分析输出,有可能改进当前的预防性维护流程并实施预测性维护流程。这些解决方案减少了停机时间、节省了人力并延长了组件的使用寿命;从而实现了最大的效率和安全性。本文讨论了使用红外摄像机和射频识别 (RFID) 作为机身状况监测的两种智能机库技术的无人机 (UAV) 的可能实施。所介绍的智能技术实施是对案例研究的具体结果的跟踪,该案例研究的重点是教练机故障监测及其对维护策略变化的影响。案例研究故障指数显示了飞机最容易受损的关键部件。本文的目的是证明对飞机关键部件进行全面监控的必要性,然后分析并提出一种更有效、最合适的飞机关键部件技术状况监控形式。本文描述了使用红外摄像机的无人机 (UAV) 进行目视检查的整个过程及其相关过程;此外,它还介绍了使用 RFID 标签作为支持目视检查的标签工具的可能用途。实施标准适用于小型飞机维修组织的维修和大修,以后还可以提高运营效率。最后的建议描述了所提解决方案的可能用途、它们的主要优点以及它们在教练机维护中实施的局限性。
测试方法 方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.9 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.8 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.14 密封 1015.10 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序1021.3 数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装引起的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.1 芯片渗透测试(针对塑料设备) 机械测试 2001.3 恒定加速度 2002.5 机械冲击 2003.11 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.11 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键拉力试验) 2012.9 射线照相术 2013.1 DPA 内部目视检查 2014 内部目视和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.10 内部目视(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试
摘要:航空业第四次工业革命——航空 4.0 中宣布的新型先进智能技术代表了飞机维护流程中的新可能性和巨大挑战。这些技术的主要优点是可以监控、传输、存储和分析大量数据集。根据分析输出,有可能改进当前的预防性维护流程并实施预测性维护流程。这些解决方案减少了停机时间、节省了人力并延长了组件的使用寿命;从而实现了最大的效率和安全性。本文讨论了使用红外摄像机和射频识别 (RFID) 作为机身状况监测的两种智能机库技术的无人机 (UAV) 的可能实施。所介绍的智能技术实施是对案例研究的具体结果的跟踪,该案例研究的重点是教练机故障监测及其对维护策略变化的影响。案例研究故障指数显示了飞机最容易受损的关键部件。本文的目的是证明对飞机关键部件进行全面监控的必要性,然后分析并提出一种更有效、最合适的飞机关键部件技术状况监控形式。本文描述了使用红外摄像机的无人机 (UAV) 进行目视检查的整个过程及其相关过程;此外,它还介绍了使用 RFID 标签作为支持目视检查的标签工具的可能用途。实施标准适用于小型飞机维修组织的维修和大修,以后还可以提高运营效率。最后的建议描述了所提解决方案的可能用途、它们的主要优点以及它们在教练机维护中实施的局限性。
测试方法 方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.10 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.9 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.15 密封 1015.11 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序1021.3 数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装引起的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.2 芯片渗透测试(针对塑料设备) 机械测试 2001.4 恒定加速度 2002.5 机械冲击 2003.12 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.12 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键拉力试验) 2012.9 射线照相术 2013.1 DPA 内部目视检查 2014 内部目视和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.11 内部目视(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试