扫雷舰是一种使用声纳探测并摧毁水雷的军舰。任何被归类为“可能为水雷”的声纳回波都必须进行目视识别,以确保物体的性质。这种视觉识别是由配备摄像头的无人机(Poisson Auto Propulsé - PAP)或扫雷潜水员进行的。
绩效衡量标准 通过 不通过 N/A 1. 准备 DD 表格 565: a. 在 DD 表格 565 上所有不必要的方框中填写“无”或“N/A”。 b. 如果信息未知,请输入“未知”或“UNK”。 c. 撤离表格原件和一份带有遗骸的副本。 2. 在 DD 表格 565 上输入信息: a. 输入暂时确定的死者信息: (1) 在方框 1a 中输入死者的疑似姓名(姓、名、中间名或未确定)。 (2) 在方框 1b 中输入死者的等级。 (3) 在方框 1c 中输入死者的 SSN/DOD ID 号码。 (4) 在方框 1d 中输入死者的出生日期。 (5) 在方框 1e 中输入死者的组织。 (6) 在方框 1f 中输入死者的服务。 (7) 在方框 1g 中输入收到的邮件。 (8) 在方框 1h 中输入撤离号码 (EVAC#)。 (9) 在方框 1i 中输入 RFID#。 (10) 如果方框 1j 中附有 CBRNE 声明,则划上“是”或“否”。b. 在方框 2 中输入暂时确认死者身份的人员提供的信息。c. 输入查看的详细信息:(1) 在方框 3a 中输入查看的日期(YYYYMMDD)。(2) 在方框 3b 中输入查看的时间。(3) 在方框 3c 中输入查看的地点。d. 输入进行目视识别的人员的信息:(1) 在方框 4a 中输入人员的姓名(姓氏、名字、中间名)。(2) 在方框 4b 中输入人员的等级。(3) 在方框 4c 中输入人员的社会安全号码。 (4) 在方框 4d 中输入人员的组织。 (5) 确保进行目视识别的人员在方框 4e 中提供了签名。 (6) 确保签名者在方框 4f 中输入签名日期(YYYYMMDD)。 (7) 在方框 4g 中输入与死者的关系。 (8) 在方框 4h 中输入您认识死者的时间长度。e. 输入证人信息:(1) 在方框 5a 中输入见证身份识别的人员的姓名(姓氏、名字、中间名)。 (2) 在方框 5b 中输入证人的级别。 (3) 在方框 5c 中输入证人的国防部编号。 (4) 在方框 5d 中输入证人的组织。 (5) 确保证人在方框 5e 中提供了签名。 (6) 在方框 5f 中输入签名日期(YYYYMMDD)。
目视检查是迄今为止最常见的无损检测 (NDE) 技术(参考文献 1)。在尝试确定任何部件或样本是否适用于其预期应用时,目视检查通常是检查过程的第一步。通常,几乎任何样本都可以通过目视检查来确定其制造的准确性。例如,目视检查可用于确定部件是否按照正确的尺寸制造、部件是否完整或所有部件是否已正确组装到设备中(参考文献 2)。虽然直接目视检查是最常见的无损检测技术(图 1),但许多其他 NDE 方法需要视觉干预来解释在进行检查时获得的图像。例如,使用可见红色或荧光染料的渗透检查依赖于检查员目视识别表面指示的能力。磁粉检测与可见光和荧光检测技术属于同一类别,射线照相术依赖于解释者对射线照相图像的视觉判断,该图像可以在胶片上或视频监视器上显示。本文的其余部分总结了视觉检测方法,该方法至少需要与被检查的样本部分进行视觉接触。在得出视觉检测的定义时,文献中指出,在
摘要 本方案旨在描述实地方法,用于持续收集鲑鱼产卵林丰度并随后估计成年鲑鱼繁殖种群大小。我们建议在预定的 3-5 公里长的河段进行调查,使用空间平衡的旋转面板设计。我们建议每年抽取采样范围内所有河段的 10% 作为监测目标;此外,考虑到访问问题和其他采样障碍,我们建议初始样本抽取应过度选择河段(采样率为 25%),以提供实地灵活性。一次实地调查应在鱼进入产卵区之前进行,此后每隔 7-14 天进行一次调查,直到不再观察到新的鱼和产卵林。调查员需要认识到,河流流量和/或天气条件会对调查的时间方面产生一定影响。所有产卵林都将按物种进行识别、测量和地理参考。通过跟踪之前调查中测量的单个产卵石的状况,将估计每个流域的产卵石寿命和观察者在产卵石检测中的效率。为了记录性别比例,将根据产卵石的行为或其他视觉线索对所有活鱼进行目视识别(将对死鱼进行识别、性别鉴定、检查标签和测量,按照第 59 页的尸体计数协议)。在多个鲑鱼物种在给定产卵区重叠的情况下,产卵石大小将有助于区分所涉及的物种。
摘要 本协议的目的是描述用于持续收集鲑鱼产卵林丰度并随后估计成年鲑鱼繁殖种群大小的现场方法。我们建议使用空间平衡的旋转面板设计在预定的 3-5 公里长的河段进行调查。我们建议每年抽取采样范围内所有河段的 10% 作为监测目标;此外,为了解决访问问题和其他采样障碍,我们建议初始样本抽取应过度选择河段(采样率为 25%)以提供现场灵活性。一次现场调查应在鱼进入产卵区之前进行,此后每隔 7-14 天进行一次调查,直到不再观察到新鱼和产卵林。调查人员需要认识到,河流流量和/或天气条件会对调查的时间方面产生一定影响。所有产卵林都将被标识为物种、进行测量和地理参考。通过跟踪在之前调查期间测量的单个产卵林的状况,将估计每个流域的产卵林寿命和观察者在产卵林检测中的效率。为了记录性别比例,将根据产卵林的行为或其他视觉线索对所有活鱼的性别进行目视识别(将对死鱼进行标识、性别鉴定、检查标签和测量,按照第 59 页的尸体计数协议进行)。在多个鲑鱼物种在给定的产卵区重叠的情况下,产卵林的大小将有助于区分所涉及的物种。
[背景和目标] 原生生物是一类生物,占真核生物系统发育多样性的大部分,存在于地球的所有环境中,包括土壤、海洋和湖泊。在水生生态系统中,它们作为重要的初级生产者、初级消费者和分解者,在微生物循环中发挥着重要作用。此外,底栖和附生原生动物是鱼类和甲壳类动物的直接食物,因此对生态系统内的营养循环做出了巨大贡献。因此,了解原生生物群对于更深入地了解该环境中的整个生态系统至关重要。针对深海、南极洲和海洋等环境的原生动物生物群的详细分析已经有很多报道,但是对于涵盖陆地上所谓熟悉的普通环境(普遍环境)中的许多生物群的详细分析却知之甚少。霞浦湖是日本第二大海底湖,平均深度为4米,堪称普遍淡水环境的代表性湖泊之一。自 1976 年以来,日本国立环境研究所 (NIES) 一直在霞浦湖的 10 个点对水质和生物群落进行长期监测。然而,在其中两个地点,对原生动物生物群的调查仅限于使用光学显微镜进行的目视识别,尚未报告DNA水平的详细分析。此外,由于仅收集了地表水样本,对底栖原生动物和附生原生动物的研究不足。 在本研究中,除了在显微镜下进行形态观察外,我们还使用环境 DNA 分析来研究原生动物生物群,包括底栖生物和固着生物,目的是进一步增强对霞浦湖生态系统的了解的基础。 [方法] ○ 调查地点及抽样方法
目视检查是迄今为止最常见的无损检测 (NDE) 技术(参考文献 1)。在尝试确定任何部件或样本是否适用于其预期应用时,目视检查通常是检查过程的第一步。通常,几乎任何样本都可以通过目视检查来确定其制造的准确性。例如,目视检查可用于确定部件是否按照正确的尺寸制造、部件是否完整或所有部件是否已正确组装到设备中(参考文献 2)。虽然直接目视检查是最常见的无损检测技术(图 1),但许多其他 NDE 方法需要视觉干预来解释在进行检查时获得的图像。例如,使用可见红色或荧光染料的渗透检查依赖于检查员目视识别表面指示的能力。磁粉检测与可见光检测技术和荧光检测技术属于同一类别,而射线照相技术则依赖于解释人员对射线图像的视觉判断,该图像可以显示在胶片上,也可以显示在视频监视器上。本文的其余部分对目视检测方法进行了总结,该方法至少需要与被检测样本的部分进行视觉接触。在对目视检测进行定义时,文献中指出,目视检测经验以及与经验丰富的目视检测员的讨论表明,这种 NDE 方法不仅包括眼睛的使用,还包括检测员使用的其他感觉和认知过程(参考文献 3)。因此,现在文献中对目视检测有了扩展的定义:“目视检测是利用人类感觉系统检查和评估系统和部件的过程,仅借助放大镜、牙签、听诊器等机械增强感觉输入来辅助。”检查过程可以通过观察、聆听、感觉、嗅觉、摇晃和扭动等行为来完成。它包括一个认知部分,其中观察结果与结构知识以及服务文献中的描述和图表相关联(参考文献 3)。”
目视检查是迄今为止最常见的无损检测 (NDE) 技术(参考文献 1)。在尝试确定任何部件或样本是否适用于其预期应用时,目视检查通常是检查过程的第一步。通常,几乎任何样本都可以通过目视检查来确定其制造的准确性。例如,目视检查可用于确定部件是否按照正确的尺寸制造、部件是否完整或所有部件是否已正确组装到设备中(参考文献 2)。虽然直接目视检查是最常见的无损检测技术(图 1),但许多其他 NDE 方法需要视觉干预来解释在进行检查时获得的图像。例如,使用可见红色或荧光染料的渗透检查依赖于检查员目视识别表面指示的能力。磁粉检测与可见光检测技术和荧光检测技术属于同一类别,而射线照相技术则依赖于解释人员对射线图像的视觉判断,该图像可以显示在胶片上,也可以显示在视频监视器上。本文的其余部分对目视检测方法进行了总结,该方法至少需要与被检测样本的部分进行视觉接触。在对目视检测进行定义时,文献中指出,目视检测经验以及与经验丰富的目视检测员的讨论表明,这种 NDE 方法不仅包括眼睛的使用,还包括检测员使用的其他感觉和认知过程(参考文献 3)。因此,现在文献中对目视检测有了扩展的定义:“目视检测是利用人类感觉系统检查和评估系统和部件的过程,仅借助放大镜、牙签、听诊器等机械增强感觉输入来辅助。”检查过程可以通过观察、聆听、感觉、嗅觉、摇晃和扭动等行为来完成。它包括一个认知部分,其中观察结果与结构知识以及服务文献中的描述和图表相关联(参考文献 3)。”
目视检查是迄今为止最常见的无损检测 (NDE) 技术(参考文献 1)。在尝试确定任何部件或样本是否适用于其预期应用时,目视检查通常是检查过程的第一步。通常,几乎任何样本都可以通过目视检查来确定其制造的准确性。例如,目视检查可用于确定部件是否按照正确的尺寸制造、部件是否完整或所有部件是否已正确组装到设备中(参考文献 2)。虽然直接目视检查是最常见的无损检测技术(图 1),但许多其他 NDE 方法需要视觉干预来解释在进行检查时获得的图像。例如,使用可见红色或荧光染料的渗透检查依赖于检查员目视识别表面指示的能力。磁粉检测与可见光检测技术和荧光检测技术属于同一类别,而射线照相技术则依赖于解释人员对射线图像的视觉判断,该图像可以显示在胶片上,也可以显示在视频监视器上。本文的其余部分对目视检测方法进行了总结,该方法至少需要与被检测样本的部分进行视觉接触。在对目视检测进行定义时,文献中指出,目视检测经验以及与经验丰富的目视检测员的讨论表明,这种 NDE 方法不仅包括眼睛的使用,还包括检测员使用的其他感觉和认知过程(参考文献 3)。因此,现在文献中对目视检测有了扩展的定义:“目视检测是利用人类感觉系统检查和评估系统和部件的过程,仅借助放大镜、牙签、听诊器等机械增强感觉输入来辅助。”检查过程可以通过观察、聆听、感觉、嗅觉、摇晃和扭动等行为来完成。它包括一个认知部分,其中观察结果与结构知识以及服务文献中的描述和图表相关联(参考文献 3)。”
目视检查是迄今为止最常见的无损检测 (NDE) 技术(参考文献 1)。在尝试确定任何部件或样本是否适用于其预期应用时,目视检查通常是检查过程的第一步。通常,几乎任何样本都可以通过目视检查来确定其制造的准确性。例如,目视检查可用于确定部件是否按照正确的尺寸制造、部件是否完整或所有部件是否已正确组装到设备中(参考文献 2)。虽然直接目视检查是最常见的无损检测技术(图 1),但许多其他 NDE 方法需要视觉干预来解释在进行检查时获得的图像。例如,使用可见红色或荧光染料的渗透检查依赖于检查员目视识别表面指示的能力。磁粉检测与可见光检测技术和荧光检测技术属于同一类别,而射线照相技术则依赖于解释人员对射线图像的视觉判断,该图像可以显示在胶片上,也可以显示在视频监视器上。本文的其余部分对目视检测方法进行了总结,该方法至少需要与被检测样本的部分进行视觉接触。在对目视检测进行定义时,文献中指出,目视检测经验以及与经验丰富的目视检测员的讨论表明,这种 NDE 方法不仅包括眼睛的使用,还包括检测员使用的其他感觉和认知过程(参考文献 3)。因此,现在文献中对目视检测有了扩展的定义:“目视检测是利用人类感觉系统检查和评估系统和部件的过程,仅借助放大镜、牙签、听诊器等机械增强感觉输入来辅助。”检查过程可以通过观察、聆听、感觉、嗅觉、摇晃和扭动等行为来完成。它包括一个认知部分,其中观察结果与结构知识以及服务文献中的描述和图表相关联(参考文献 3)。”