hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
接种疫苗后,将评估免疫反应。这项试验将揭示化疗、免疫疗法或化学免疫疗法是否会影响患者对疫苗接种的反应,并可作为对其他脆弱人群或接种不同 COVID-19 疫苗的可比群体进行转化研究的模型。了解这组患者是否能对 COVID-19 疫苗产生足够的免疫反应,将为他们在疫情期间提供支持和咨询的信息,并让他们发出自己的声音。抗体滴度是否足够高,可以预防 COVID-19?抗体滴度的持久性如何?这些患者的 T 细胞反应是否足以支持记忆 B 细胞的形成?两次接种疫苗是否足够,还是需要额外的剂量?是否需要替代措施?为了确保知识的快速传播,我们的目标是尽快公开结果。此外,数据共享将允许比较 VOICE 结果和其他研究的结果,以快速扩大获得的知识。❐
摘要 同侧偏盲是因中风、肿瘤、脑外伤和其他罕见原因引起的视野缺损。由于视觉系统受损,会出现侧向忽视,导致难以检测双眼视野一侧的物体,这使患者在日常活动中面临潜在危险,尤其是在户外交通中。已经开发出不同的光学辅助设备,如菲涅尔棱镜,通过增加受影响半视野的感知来帮助这些患者。这种棱镜矫正可以出现在各种配置中,例如:轭式棱镜、单眼和双眼扇形棱镜,底座朝向患侧。治疗这些患者的另一种选择是基于刺激受影响半视野的视觉训练。 关键词:同侧偏盲、视野丧失、棱镜矫正
在通用盲量子计算问题中,客户端希望利用单个量子服务器来评估 C | 0 ⟩,其中 C 是任意量子电路,同时保持 C 的秘密性。客户端的目标是使用尽可能少的资源。这个问题由 Broadbent、Fitzsimons 和 Kashefi[4] 首次提出,已成为量子密码学研究的基础,这不仅是因为它本身的重要性,还因为它为新技术提供了试验台,这些新技术以后可以应用于相关问题(例如量子计算验证)。关于这个问题的已知协议主要是信息理论 (IT) 安全的或基于陷门假设(公钥加密)。在本文中,我们研究了由随机预言机建模的对称密钥原语的可用性如何改变通用盲量子计算的复杂性。我们给出了一种新的通用盲量子计算协议。与之前关于 IT 安全协议(例如 BFK[4])的工作类似,我们的协议可以分为两个阶段。在第一阶段,客户端准备一些具有相对简单量子门的量子小工具并将它们发送到服务器,而在第二阶段,客户端完全是经典的——它甚至不需要量子存储。至关重要的是,该协议的第一阶段是简洁的,也就是说,它的复杂性与电路大小无关。给定安全参数 κ ,它的复杂性只是一个固定的 κ 多项式,可用于评估大小高达 κ 的次指数的任何电路(或多个电路)。相比之下,已知的方案要么要求客户端执行与电路大小成比例的量子计算 [4],要么需要陷门假设 [18]。
摘要。在脑图像分析中,许多当前的管道对病变的存在不具有鲁棒性,从而降低了其准确性和鲁棒性。例如,处理病变时,经典医学图像处理操作(如非线性配准或分割)的性能会迅速下降。为了尽量减少它们的影响,一些作者提出修复这些病变,以便可以使用经典管道。然而,这需要手动划定感兴趣的区域,这很耗时。在本文中,我们提出了一个深度网络,它能够自动盲目地修复脑图像中的病变,从而使当前管道在病理条件下稳健地运行。我们使用 SPM12 管道和我们自动修复的图像证明了脑分割问题中改进的鲁棒性/准确性。关键词:病变修复、MRI、深度学习、稳健分割。
1. 要感染,就必须有能引起感染的细菌。对错 2. 感染预防和控制原则包括了解细菌是如何传播的。对错 3. 细菌可以通过看似没有生病的人传播。对错 4. 感染链是传播和预防感染的基础。对错 5. 细菌一旦离开藏身之处,找到传播途径,就需要一个入口。对错 6. 血源性病原体,如艾滋病毒和乙肝、丙肝和丁肝,是一类导致疾病的微生物。对错 7. 雇主不需要为所有员工制定职业暴露计划。对错 8. 食物处理、烹饪和储存的安全步骤对于预防食源性疾病至关重要。对错 9. 许多疾病和病症都是由于不用肥皂和干净的流水洗手而传播的。对错 10. 定期清洁和消毒经常接触的表面和物体无助于防止感染传播。对错
• 美国宇航局十年调查的雪和冷地过程 (SCLP) 任务概念使用四种仪器收集积雪范围和特征的数据(深度、密度、雪水当量 (SWE))
我们的目标是当天取货、包装和发货。此保证适用于有库存的商品,如在线每件商品的描述所示。周一至周五下午 2 点 CST 前收到的商品订单(如果有库存)将在当天发货。周末/节假日的商品订单(如果有库存)将在下一个工作日发货。此保证不适用于同一商品的大量订单或包含当天商品和缺货商品(显示典型发货日期)的订单。订单的运费另计。
© Martin-Baker Aircraft Co. Ltd. 2017。本版权作品包含 Martin-Baker 专有信息,本文档的任何部分均不得复制、传播或
摘要 在 DRAM 和 SRAM 等深亚微米存储器中,准确感测位线电压变得非常具有挑战性,因为制造工艺的固有变化导致晶体管特性失配,这带来了严重的挑战,导致电路故障和产量下降。本文解决了这些问题,并将补偿方案应用于各种感测放大器的原理图,从而对工艺引起的变化具有很高的容忍度。使用 DGFinFET 设计的原理图利用增强的自补偿技术来克服物理晶体管特性的差异。使用蒙特卡罗技术重建晶体管失配(阈值电压,V t ),表明即使在 40-50mV 的严重 V t 失配下,所提出的 CCLSA 原理图也能正确运行。将这些结果与文献中报道的相应电路进行了速度、面积和产量的比较。与未补偿的设计相比,该设计还提供了高达 20-30% 的产量,并且降低了电路和性能的复杂性。这些电路在 45nm 和 32nm 技术节点上很容易实现。关键词:补偿、工艺变化、DRAM、FinFET 感测放大器、稳健性