DNA2VEC载体。单词嵌入被广泛用于自然语言处理(NLP),可使用固定长度向量有效地将单词映射到高维空间中[19]。这个概念也已应用于DNA序列[20]。在这项研究中,我们利用了预训练的单词向量来嵌入DNA序列。我们通过窗口大小m(m = 3)和步长s(s = 1)进行长度n的DNA样本,然后获得长度m xi∈{x 1,x 2,x 3,...,x n-2}的N-2 DNA序列。每个X I可以在衍生自DNA2VEC的预训练的DNA载体基质中找到[21]。我们使用ei∈Rk来表达缝隙I序列的k(k = 100)维矢量,然后将我们的序列x i转换为e ei∈{e 1,e 2,e 3,...,e n-2}。最后,对于每个长度n的样本,它可以嵌入为:e 1:n -2 = e1⊕e2 e 2 e 2⊕e n -2(1),其中⊕表示串联算子。
在750℃下烧成6小时以上,成为单斜晶WO 3 相。 P-2、P-3在烧成前为单斜晶系WO 3 、三斜晶系WO 3 、单斜晶系W 0.71 Mo 0.29 O 3 (PDF 01-076-1297),但在750℃下烧成6小时以上,变为单斜晶系W 0.71 钼 0.29 O 3 (PDF 01-076-1297) 和矩形 W 0.4 Mo 0.6 O 3 (PDF 01-076-1280)。 P-4在750℃下烧制24小时之前,单斜晶系W 0.71 Mo 0.29 O 3 (PDF 01-076-1297)、矩形W 0.4 Mo 0.6 O 3 和单斜晶系MoO 3 混合,但经过100小时后。煅烧后,MoO 3 峰消失,单斜晶系W 0.71 Mo形成了0.29 O 3 和矩形晶体W 0.4 Mo 0.6 O 3 。 P-5在烧成前为单斜MoO 3 (PDF PDF 00-047-1081),但烧成6小时以上后,变为具有层状结构的矩形MoO 3 (PDF 03-065-2421)。
摘要 — 本文提出了一种用于多频带带通滤波器 (MBPF) 的相似变换方法,将星型拓扑转换为直列拓扑。介绍了一种通用理论技术,用耦合矩阵的相似变换旋转代替传统的通过滤波器综合逐步提取 LC 电路,解决了参数提取过程中的舍入误差,提高了理论综合结果的准确性。直列拓扑的应用大大提高了滤波器设计的灵活性,降低了电路复杂性,简化了高阶 MBPF 的制造。基于基片集成波导 (SIW) 技术,设计和实现了一系列示例,包括三频、四频,特别是首次报道的五频三阶切比雪夫 SIW 带通滤波器。模拟响应与测量结果之间具有良好的一致性,验证了设计的滤波器模型和提出的理论方法。
摘要 - 全球物联网(IoT)的采用取决于传感器节点的大规模部署和及时的数据收集。但是,在远程或无法访问的区域中安装所需的地面基础设施在经济上是没有吸引力或不可行的。成本效益的纳米卫星部署在低地球轨道(LEO)中是一种替代用解决方案:板载物联网网关可访问对远程物联网设备的访问,这是根据直接到卫星IoT(DTS-IOT)体系结构的访问。DTS-iot的主要挑战之一是设计通信协议,以通过同样受约束的轨道网关提供的数千种高度约束设备。在本文中,我们通过首先估计(移动)纳米卫星足迹下方设置的设备的(不同)尺寸来解决此问题。然后,我们证明了用于智能油门DTS-iot访问协议时估计的适用性。由于最近的工作表明,当网络尺寸估计可用时,MAC协议提高了DTS-IOT网络的吞吐量和能源效率,因此我们在此提出了DTS- IOT中的新颖且计算高效的网络尺寸估计器:基于乐观的碰撞信息(OCI)的估计器。我们通过广泛的DTS-iot场景模拟来评估OCI的有效性。结果表明,当使用网络尺寸估计时,基于Aloha的DTS- IOT网络的可伸缩性将增强8倍,最多可提供4×10 3设备,而无需罚款。我们还显示了OCI机制的有效性,并证明了其低计算成本实施,使其成为DTS-IOT网络估计的有力候选者。
4.1. 该计划可以概述各种现有综合建筑的电气化途径,包括文化机构、政府部门、国防设施、教育设施(包括各大学)、体育设施(如澳大利亚体育学院)和公寓楼。 4.2. 该计划可以通过考虑具有独特挑战的综合建筑来增强,例如研究建筑和医疗设施,它们使用化石燃料气体产生蒸汽进行消毒和加湿。 4.3. 为了为综合商业建筑或区域的脱气提供模型并与行业和其他组织分享经验,澳大利亚首都领地政府可以通过为在北领地试点实施集中式热中心提供支持,创建示范点,帮助克服先行者障碍。
将电子自旋纳入电子设备是旋转的核心思想。[1]这个不断增长的研究领域最终旨在在Terahertz(THZ)速率上产生,控制和检测自旋电流。[2]要实现这种高速自旋操作,旋转轨道相互作用(SOI),尽管很弱,但它起着关键作用,因为它将电子的运动与旋转状态相结合。[3]从经典的角度来看,SOI可以理解为旋转依赖性的有效磁场,该磁场会在相反的方向上偏转转移旋转和旋转传导电子(见图1 A)。SOI的重要后果是旋转厅效应(SHA)[4]及其磁反部分,即异常效果(AHE)。[5,6]在带有SOI的金属中,她将电荷电流转换为横向纯自旋
本文探讨了3D打印之前的细丝预擦的效果。根据孔隙率,微观结构和聚合物链键合评估了脱离和预先干燥的3D印刷PLA之间的比较。检查了三个条件:一种新的PLA作为参考,使用的PLA细丝存储在带有50克干燥剂的真空袋中,并使用PLA暴露于湿度为48h,96h和150h。在所有条件下,干燥和3D打印的参数设置都是恒定的。结果,将细丝进行预干导致多孔的微结构,较短的层间间隙和更好的层间粘附。预先干燥的方法提供的微观结构比Undred细丝更好。由于挤出过程中质量流量的改善,预先干燥样品的密度增加了。最后,FTIR分析表明,预先干燥的细丝表现出从O-H区域宽峰中的O-H分子,该分子没有或几乎没有水的存在(H 2 O)。
抽象的MSC是具有多能分化潜力和免疫抑制能力的多能干细胞。因此,MSC在再生医学中起着重要作用;对其调节免疫反应机制的研究还将导致治疗免疫疾病的新策略。研究表明,MSC可以通过分泌细胞因子或细胞对细胞接触来调节适应性和先天免疫,并发挥免疫抑制作用。此外,MSC的细胞外囊泡分泌也是重要的免疫调节机制。MSC需要在体外进行培养,然后才能调节免疫力。已经表明,培养过程中MSC的预处理可以提高细胞存活率并进一步提高免疫调节的能力。在本文中,讨论了调节免疫反应的MSC的机制,以加深对调节免疫力的MSC的理解。
在皮质区域内发现缺氧口袋已经改变了对脑氧动力学的理解,揭示了它们双重作用是神经元适应性的贡献者,也是对功能障碍的潜在前体。这些瞬时氧气占用的微环境在神经血管耦合,突触可塑性和血管生成中起着关键作用,这对于维持认知弹性和神经元健康至关重要。研究皮质区域内的低氧袋在老龄化的人群和具有神经退行性疾病的个体中尤其重要。同时研究强调了身体,社会和认知活动调节脑氧合的能力,提供自然,可及的干预措施以优化氧气输送和利用。这项研究综合了来自神经影像,行为科学和纵向研究的发现,以说明日常常规如何减轻缺氧引起的认知能力下降并促进弹性。通过整合百岁老人,适应低氧的物种和多模式干预研究的见解,该框架突出了基于生活方式的策略在解决脑氧气定义方面的变革潜力。提倡跨学科方法的发现,以开发针对公共卫生,康复和个性化认知护理的有针对性的干预措施。
1由哥伦比亚国立大学国家研究部门资助的项目。 div>*细菌学家,MSC(C)。 div>卫生和动物生产的毕业生。 div>微生物学和流行病学小组。 div>兽医和Zootechnics的学院。 div>哥伦比亚国立大学。 div>电子邮件:nbrianog@unal.edu.co ** DMV,MSC,PhD。 div>相关教授。 div>遗传学研究所主任。 div>哥伦比亚国立大学。 div>电子邮件:vjveraa@unal.edu.co *** DMV,MSC,PhD。 div>相关教授。 div>兽医和Zootechnics的学院。 div>哥伦比亚国立大学。 div>电子邮件:lcvillamilj@unal.edu.co接收日期:2006年11月28日。批准日期:2007年2月7日。