在过去的十年中,由于其可持续性和力量,竹子引起了很多关注。竹子比其他天然纤维的优势包括其丰富的存在,高产量以及在3 - 8年内迅速达到最大高度和强度的能力。竹子可用作独立的结构材料和混凝土钢筋,形式为竹制,竹夹板和竹子复合杆,用于低层和低成本建筑。在这项研究中,采用竹棍作为混凝土立方体的加固。考虑了以下影响因素:竹棍的体积比为0.6%,1.2%和2.4%,竹棒直径为1毫米,1.5毫米和2毫米,以及10、20和30的竹棒纵横比的纵横比比。测试结果表明,添加了0.6%的棍子,BSRC抗压强度分别为20和30的长度比率分别上升了3.24和17.33%。通过添加1.2%和2.4%的竹棍,长度为10乘21.38和20.94%,可以增强样品的抗压强度。将获得的结果与常规混凝土立方体的机械性能进行了比较。目前,河岸和淡水是制造混凝土中最常使用的材料。河岸和淡水的广泛使用导致了重大的环境问题。由于世界上许多地方都缺乏适当的淡水供应,因此不建议过度使用这种资源。因此,使用盐水和海沙制成竹棒钢筋混凝土和普通混凝土标本。最后,提出了强度和应力应变模型。
半导体压电纳米线 (NW) 是开发由生物相容性和非关键材料制成的高效机械能传感器的有希望的候选材料。人们对机械能收集的兴趣日益浓厚,因此研究半导体 NW 中的压电性、自由载流子屏蔽和耗尽之间的竞争至关重要。到目前为止,由于表征这些纳米结构中的直接压电效应所带来的实验挑战,这一主题很少得到研究。在这里,我们使用 DataCube 模式下的 PFM 技术并通过逆压电效应测量有效压电系数来摆脱这些限制。我们证明了垂直排列的 ZnO NW 的有效压电系数随着半径的减小而急剧增加。我们还提出了一个数值模型,通过考虑掺杂剂和表面陷阱来定量解释这种行为。这些结果对基于垂直排列的半导体 NW 的机械能传感器的表征和优化有很大影响。
摘要髓鞘促进了沿轴突的动作电位的快速传导。在中枢神经系统(CNS)中,髓鞘轴突的直径超过100倍,传导速度随直径的增加线性缩放。轴突直径和髓鞘形成密切相互联系,轴突直径对髓鞘产生了强大的影响。相反,周围神经系统中的骨髓鞘裂细胞既可以正面和负面影响轴突直径。但是,轴突直径是否受到中枢神经系统少突胶质细胞的调节。在这里,我们研究了使用小鼠(MBP SHI/SHI和M YRF条件敲除)和斑马鱼(Olig2 morpholino)模型的CNS轴突直径生长。我们发现,CNS轴突无法实现适当和多样的直径,轴突的包裹也不是紧凑的髓磷脂的形成。这表明发育中心的轴突直径生长与髓鞘形成无关,并表明CNS和PNS的髓细胞细胞差异地影响了轴突形态。
作者:Minghua Liu 1、Farid Khasiyev 2、Sanjeev Law 1,3,4、Antonio Spagnolo-Allende 1、3 Danurys L Sanchez 1,3,4、Howard Andrews 5、Qiong Yang 6、Alexa Beiser 6、Ye Qiao 7、Emy A 4 Thomas 8、Jose Rafael Romero 9、Ta tjana Rundek 10,11,12、Adam Brickman 1,3,4、Jennifer J Manly 1,3,4 5、Mitchell SV Elkind 1,13、Sudha Seshadri 9,14、Christopher Chen 15、Ralph L Sacco 10,11,12、Saima 6 Hilal 15、Bruce A Wasserman 7,16、Giuseppe 1,3,4、Myriam Fornage 8,17; 7 8 隶属关系: 9 1 哥伦比亚大学瓦格洛斯内科与外科医学院神经病学系,10 美国纽约州纽约市 11 2 圣路易斯大学医学院神经病学系。密苏里州路易斯,12 3 TAUB研究疾病研究所和衰老大脑,Vagelos学院,13个医师和外科医生,哥伦比亚大学,纽约,纽约,纽约,14 4 4 4 The Sergievsky Center,Vagelos医师和外科学院,哥伦比亚大学,15年,纽约大学,纽约大学,纽约,美国16 5 BISTATIS IS CUPPLY SHILLECH,MAIL SHICOL,MAIL SHILEBY,USY SEPRICY,MA SERVELY,MA NOWSONN,17 NY SONTON,BOST,NY ny约翰·霍普金斯大学医学院,美国马里兰州20 8布朗基金会分子医学研究所,MC政府医学院,美国德克萨斯州霍斯顿市德克萨斯大学卫生科学中心21 2 22 9美国马萨诸塞州波士顿医学院神经病学部美国佛罗里达州27号Iami Miller医学院28 13 13哥伦比亚大学哥伦比亚大学,美国新纽约州30 14 Glenn Biggs阿尔茨海默氏症和神经退行性疾病研究所,德克萨斯大学健康科学中心,美国德克萨斯州圣安东尼奥市31号
显着性陈述我们在同一动物队列中获得了功能和结构指标,即传导速度,途径长度,轴突直径和G-RATIO。在大鼠运动皮质中对侧光遗传学刺激后,通过电生理测量获得了触及传导时间。组织的冷冻固定揭示了直径分布中不同亚种群的不同收缩。测得的潜伏期对应于小轴突亚群,直径延伸至用电子显微镜获得的分布模式。扩散-MRI在校正直径加权和收缩后,主要对用组织学获得的较大轴突敏感。不同的模态可能对轴突投影的结构 - 功能关系具有非常不同的敏感性,轴突投影必须在解释中解释。摘要神经纤维的结构功能关系描述了轴突直径,髓磷脂厚度(即G-Ratio)和传导速度之间的经验确定的线性关系。我们研究了通过啮齿动物大脑的call体突出的轴突中不同方式的结构 - 功能关系。我们使用光遗传学诱发的局部场电位(LFP)和基于扩散磁共振成像(DMRI)的拖拉术测量Callosal长度后测量了转基因传导时间。拖拉术遵循与call体中荧光标记的轴突相同的投影。在同一动物中,使用透射电子显微镜(TEM)和DMRI定量轴突直径。TEM的轴突分布表明双峰群体,其中较大的轴突比较小的轴突比较小的轴突与冷冻-TEM进行比较。将收缩校正施加到脱水组织TEM的轴突直径上时,它们与同一动物中获得的DMRI的估计更好地对齐。测量的LFP预测了与轴突分布的主要模式相一致的轴突直径,而由DMRI估计的大轴突预测潜伏期太短,无法通过LFPS测量。不同的方式显示出不同程度的变化,在动物之间较低,表明这种变异在方法论上是主导的 - 不是解剖学上。我们的结果表明,模式与整个轴突直径分布具有不同的灵敏度曲线。因此,在解释方法的度量预测时必须谨慎,因为它可能不代表完整的轴突投影的结构 - 功能关系的子部分。
前缀BCBS计划前缀BCBS计划BCBS BCBS计划A2T Blue Cross WA直径A9P蓝色十字直径ACF ACF蓝色十字AK直径AEY蓝色十字AK直径AKL蓝色十字/admin wa直径wa直径蓝色十字avl蓝色十字直径avv蓝色十字awb蓝色十字直径awj蓝色十字wa直径ayk蓝色十字ays ays ays blue cross wa diameth wa diame直径BGS蓝色十字wa直径BJE蓝色十字直径BKD蓝色十字wa直径bkh蓝色十字wa直径blue blue blue cross wa直径bsr蓝十字直径 AK BTG 蓝十字直径 WA BVE 蓝十字直径 WA BZB 蓝十字直径 WA C2E 蓝十字直径 WA C3D 蓝十字直径 WA C4A 蓝十字直径 WA
第 1 节。对 § 350-2.1 进行修订,按字母顺序插入下列定义: 卡尺直径 在离地面 12 英寸处测量的新树树干的直径。 关键根区 (CRZ) 关键根区(也称为基本根区)是树木根系直径的一部分,是维持树木稳定性和活力所必需的最小值。就本节而言,关键根区应使用以下公式计算:胸高直径(英寸)乘以 24。例如,对于树干直径为 10 英寸的树,关键根区的直径为 20 英尺。 胸高直径 (DBH) 在离地面 4.5 英尺处测量的树干的直径。 滴水线 树木周围的圆形区域,围绕其最外层树枝的尖端,雨水往往会从此处滴落。重要树木 任何胸高 (DBH) 为 20 英寸或更大的树木,或规划委员会通过的任何树木清单计划中明确标识为标本树的任何其他树木。
本报告是作为美国政府机构赞助的工作的说明而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。