背景:经颅磁刺激 (TMS) 可以对皮质进行非侵入性刺激。在多点 TMS (mTMS) 中,通过调节换能器线圈中的电流,无需线圈移动即可电子控制刺激电场 (E- 场)。目标:开发一种 mTMS 系统,该系统可以调整皮质区域内 E- 场最大值的位置和方向。方法:我们设计并制造了一个平面 5 线圈 mTMS 换能器,以便控制直径约 30 毫米的皮质区域内感应 E- 场的最大值。我们开发了电子设备,其设计由独立控制的 H 桥电路组成,可驱动多达六个 TMS 线圈。为了控制硬件,我们编写了在场可编程门阵列和计算机上运行的软件。为了在皮质中感应出所需的 E- 场,我们开发了一种优化方法来计算线圈中所需的电流。我们对 mTMS 系统进行了表征,并对一名健康志愿者进行了概念验证运动映射实验。在运动映射中,我们保持换能器位置固定,同时以电子方式移动中央前回上的 E 场最大值并测量对侧手的肌电图。结果:换能器由一个椭圆形线圈、两个八字形线圈和两个堆叠在一起的四叶草线圈组成。技术特性表明 mTMS 系统的性能符合设计。测得的运动诱发电位幅度随着 E 场最大值的位置而持续变化。结论:开发的 mTMS 系统能够在皮质区域内进行电子靶向大脑刺激。© 2021 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY-NC-ND 许可 (http://creativecommons.org/licenses/by-nc-nd/4.0/) 开放获取的文章。
我们研究的主题是未来人类在火星上的定居点的设计。当人类熟悉了这颗星球(而非首次定居)并希望建立一座可供一定数量的定居者(约 500 人)安全居住的小城市时,我们将在火星上建造基地。在这种情况下,我们设想(利用所有已经可以实现的技术)建造一个直径约 100 米的大型可居住圆顶,部分采用 3D 打印技术通过烧结“原位”材料建造,部分采用现场组装的测地线几何大玻璃窗,照亮太空基地内部并让居民可以看到外面。玻璃测地线结构的元素将由高强度铝制成,并将与玻璃本身一起由可能很快登陆火星的大型航天发射器运载。由于圆顶周围有一组电缆(具有非常高电压的超导体),距离圆顶有适当的距离(至少 50 米),这些电缆沿着理想球体的平行线排列,并由刚性圆形元件沿子午线支撑,因此能够拥有明亮的环境并观察外部全景。这些电缆将产生足以屏蔽危险的宇宙射线但距离居住区足够远的人工磁场。这种配置(与最先进的技术相比非常创新)将使未来的定居者能够舒适地生活,而不会遭受室内压力,而他们在光封闭的环境中则会受到室内压力。子午线结构本身除了支撑电缆外,还将支撑“高架起重机”的元素,以便建造结构本身(通过“增材制造”技术)并对大型外部玻璃窗元素进行必要的维护,这些元素必须清除火星尘埃,并可能被更换(在其外部牺牲层),以防被微陨石击中。在可居住的圆顶内,将有花园、公园和湖泊,以及一系列可俯瞰被外部阳光照亮的巨大空间的可居住楼层,并可欣赏到红色星球的沙丘景色。它不仅是一个生存的前哨,而且还是一个令人兴奋和有趣的地方,可以度过一个难忘的太空假期!
仅给健康动物接种疫苗。疫苗接种对感染的进一步阶段、已形成的淋巴结脓肿的破裂、随后的带菌者身份的流行、杂种马鼻疽(转移性脓肿)、出血性紫癜和肌炎以及恢复的影响尚不清楚。已证明,疫苗可减轻单匹马在感染急性期的临床症状。接种疫苗的马匹可能会感染并排出马链球菌。目前没有关于在血清阳性动物(包括具有母源抗体的动物)中使用该疫苗的信息。无论是否接种了本产品,都应将限制马链球菌感染在场所内引入和传播风险的生物安全程序作为管理工具的一部分。4.5 特殊使用预防措施 动物使用特殊预防措施 经测试,该疫苗可安全用于 5 月龄以上的马匹。给动物注射兽药的人员应采取的特殊预防措施 如不慎自我注射,应立即就医并向医生出示包装说明书或标签。 可能会发生过敏反应。对症治疗。 4.6 不良反应(频率和严重程度) 接种疫苗后,体温短暂升高高达 2.6°C,持续 1 至 5 天是很常见的。注射部位很常见短暂的局部组织反应,其特征是发热、疼痛和肿胀(直径约 5 厘米),持续长达五天。在第二次主要剂量和后续剂量后,注射部位反应的频率更加明显,并且可能出现直径高达 8 厘米的肿胀。一天内食欲不振和举止改变是常见的。接种疫苗后 1 至 5 天内,双眼经常出现眼部分泌物,可能是粘液脓性分泌物。极少数情况下会出现类似过敏反应。不良反应发生的频率采用以下惯例定义: - 非常常见 (每 10 只接受治疗的动物中超过 1 只出现不良反应) - 常见 (每 100 只接受治疗的动物中超过 1 只但少于 10 只动物) - 不常见 (每 1,000 只接受治疗的动物中超过 1 只但少于 10 只动物) - 罕见 (每 10,000 只接受治疗的动物中超过 1 只但少于 10 只动物) - 非常罕见 (每 10,000 只动物中少于 1 只动物,包括个别报告) 4.7 怀孕、哺乳或非怀孕期间使用怀孕和哺乳:
Logan Thrasher Collins,1,2 Wandy Beatty,3 Buhle Moyo,4 Michele Alves-Bezerra,5 Ayrea Hurley,5 William Lagor,6 Gang Bao,4 Zhi Hong Lu,2 David T. Curiel 2,* 1 圣路易斯华盛顿大学生物医学工程系;2 圣路易斯华盛顿大学放射肿瘤学系;3 圣路易斯华盛顿大学分子微生物学系;4 莱斯大学生物工程系;5 贝勒医学院分子生理学和生物物理学系;6 贝勒医学院综合生理学系,* 通讯作者。摘要:腺相关病毒 (AAV) 作为基因治疗的递送系统取得了巨大成功,但 AAV 仅有 4.7 kb 的包装容量严重限制了其应用范围。此外,通常需要高剂量的 AAV 来促进治疗效果,从而导致急性毒性问题。虽然已经开发了双重和三重 AAV 方法来缓解包装容量问题,但这些方法需要更高的剂量才能确保以足够的频率发生共感染。为了应对这些挑战,我们在此描述了一种由共价连接到多个腺相关病毒 (AAV) 衣壳的腺病毒 (Ad) 组成的新型递送系统,这是一种以较少的 AAV 总量更有效地共感染细胞的新方法。我们利用 DogTag-DogCatcher (DgT-DgC) 分子胶系统构建我们的 AdAAV,并证明这些混合病毒复合物可实现培养细胞的增强共转导。该技术最终可能会通过提供双重或三重 AAV 的替代方案来扩大 AAV 基因递送的实用性,该替代方案可以在较低剂量下使用,同时达到更高的共转导效率。简介尽管腺相关病毒 (AAV) 基因治疗已显示出巨大的前景并已导致 5 种治疗方法获得临床批准,1–3 但该载体的 DNA 包装能力较低(4.7 kb),一直阻碍着它的应用。人们付出了巨大的努力来开发双重 AAV 系统,该系统将治疗基因的两部分放在不同的衣壳中,旨在共同感染相同的细胞。4–7 类似的三重 AAV 系统也已被探索。8,9 双重和三重 AAV 系统可以通过 DNA 反式剪接、RNA 反式剪接或通过分裂内含肽的蛋白质剪接机制将其分裂的基因重新组合成完整形式。5,7 然而,双重和三重 AAV 通常需要更高的剂量才能实现有效的细胞共转导,尤其是在需要全身给药时。10 这是有道理的,因为两三个货物到达同一个细胞的可能性应该大致分别对应于单个货物到达细胞的比例的平方或立方。因此,大多数双重或三重 AAV 策略都集中于可以局部给药到目标组织的应用,例如视网膜基因治疗。5,7–9 双重和三重 AAV 的另一个缺点是,它们可能导致未接收所有货物的细胞产生部分蛋白质产物。5 由于这些部分蛋白质的翻译量通常比所需的治疗性蛋白质还要大,因此它们可能导致严重的毒性。缓解双重和三重 AAV 基因治疗相关问题的新方法将大大提高 AAV 在治疗需要递送大量转基因序列的疾病方面的适用性。为了应对这些挑战,我们在此构建了一种全新的基因递送系统“AdAAV”,它由更大的(直径约 100 纳米)Ad 衣壳组成,衣壳上装饰有
很难想象一个没有视觉的世界 - 眼睛无处不在。无可否认,视力的演变已成为地球生活历史上最深刻的事件之一。动物使用其视觉系统来找到食物,庇护所和伴侣,以及在其他无数行为中,可以增强其舒适性。另一方面,视觉也是由视觉引导的捕食者猎杀的众多猎物的敌人。对于此类猎物,避免被其潜在捕食者的视觉系统感知到与捕食者的视野一样重要。地球通过进化时间目睹了数十亿种猎物,如今,一些最引人注目的适应是捕食动物以捕食对选择的反应。“ camou-flig”是一个伞术,包括防止检测或识别的策略(Ruxton等人2018)。例如,许多猎物匹配背景的颜色和图案,即背景匹配(Endler 1978)。其他人的颜色模式破坏了身体的外观,即破坏性色(Thayer 1909)。还有其他与捕食者(即化妆舞会)不可食用的物体非常相似的物体(Cott 1940)。camou -fle年龄也可能涉及其他感觉系统,例如嗅觉,使化学伪装的猎物可以逃脱检测(Ruxton 2009)。Camou -flage吸引了几个世纪的生物学家和自然历史学家,并为达尔文和华莱士提供了令人信服的自然选择例子(Stevens and Merilaita 2009)。最近的研究(Wu等人1970)。虽然很容易理解有效的视觉迷恋年龄的有效性,但我们直到最近才开始阐明使凸轮型模式有效的复杂性,在什么条件下,在特定的camou型模式下是成功的,以及操纵视觉感知的机制。通过在过去的二十年中进行的研究,我们对凸轮的运作方式有了更深入,更广泛,更细微的了解。2024)‘作为埃利夫(Elife)出版的叶霍普斯(Leafhoppers)作为抗羊皮涂层的brochosomes是迷恋文学的令人兴奋的补充。研究的前提很简单。一个捕食者需要从其猎物中反映出的光,应选择猎物以最大程度地减少反射。由于许多猎物的自然背景包括具有低反射的物体,例如叶子,树皮和土壤,因此其体内的反射较低也可以最大程度地减少猎物与背景的对比,因此,其显着性。先前在许多昆虫中已经报道了抗反射涂料,包括蛾眼中的抗涂料(Bernhard等人Wu等人的研究。(2024)的重点是称为brochosomes的结构,在叶霍普珀(Cicadellidae)中广泛发现,这是一大群具有22,000多种物种的昆虫。brochosomes,第一次描述了1952年(Tulloch等人1952),是主要包括脂质和蛋白质的纳米结构。“ brochosom”这个名字来自希腊语(brochos)和身体(soma)的希腊语单词(Wang and Wong 2024)。分子系统发育分析表明,小册子在叶霍普斯的祖先中曾经演变。2024)。它们是空心的乳球形结构,通常直径约200-700 nm,表面形成常规的五边形和六边形凹陷(Rakitov 1999; Fure 1)。叶霍普斯在马尔皮亚小管中合成小册子,并以胶体悬浮液的形式通过后肠分泌(Rakitov 1996; Wang等人。通过称为“膏药”的行为,将brochosoms悬浮液应用于外皮上。膏药的行为随着物种而异。在大多数物种中,成年人用后腿从肛门上捡起一滴悬架,并将其应用于身体表面。流体干燥以留下小bro的沉积物(Rakitov 2002)。膏药后面是修饰,叶霍珀将其身体摩擦在其