摘要 心率变异性 (HRV) 测量连续心跳之间时间的变化,是身心健康的主要指标。最近的研究表明,光电容积描记法 (PPG) 传感器可用于推断 HRV。然而,许多先前的研究具有较高的错误率,因为它们仅采用了信号处理或机器学习 (ML),或者因为它们间接推断 HRV,或者因为缺乏大型训练数据集。许多先前的研究可能还需要大型 ML 模型。低准确度和大模型尺寸限制了它们在小型嵌入式设备和未来医疗保健领域的潜在应用。为了解决上述问题,我们首先收集了一个大型 PPG 信号和 HRV 基本事实数据集。利用该数据集,我们开发了结合信号处理和 ML 来直接推断 HRV 的 HRV 模型。评估结果表明,我们的方法的误差在 3.5% 到 25.7% 之间,并且优于仅使用信号处理和仅使用 ML 的方法。我们还探索了不同的 ML 模型,结果表明决策树和多层感知器的平均错误率分别为 13.0% 和 9.1%,模型最多为数百 KB,推理时间少于 1 毫秒。因此,它们更适合小型嵌入式设备,并有可能在未来实现基于 PPG 的 HRV 监测在医疗保健领域的应用。
• 航空数码相机、飞行规划、激光雷达成像、工作流程 • 正射影像、正射地图、DTM • 快速响应、走廊测绘、建筑工程、规划