处理 GPS PPS 信号的 GNSS 接收器包含政府提供的设备 (GFE) 元素,相关文件不允许直接证明符合民用要求(例如EASA ETSO-C196)。尽管如此,从基于性能的指标得出的民用要求允许考虑比例感,因此可以应用可以证明接收器性能等效合规性的方法,同时将 GFE 元素视为“黑匣子”。从这个意义上讲,根据民用标准(RTCA DO-178B / EUROCAE ED-12B;DO-254 / ED-80)进行的设计保证也必须在比例原则的基础上进行。
摘要:本研究的目的是通过审查和提供作者的看法来提供观点并帮助证明科学文章的结果,所使用的研究方法是定性的,通过从知名期刊、谷歌学术等寻找与本科学文章中使用的图书馆资源相关的资源。使用度量表来帮助描述科学文章,根据研究人员的发现,本研究的结果想要证明存在对概念、实施和指标的引用,这些引用尚未通过引用科学文章或书籍直接证明,只有一篇文章来自(Ivančić,2013),其中研究结果是关于战略实施的文献和将一些关键点联系起来对于减少战略实施错误和提高组织效率很重要,但所有这些都必须由其他研究人员的后续研究证实。未来的研究人员可以加强战略管理并提供成果,尤其是针对研究和书籍的指标。关键词:战略管理、概念、实施、成功指标。介绍
强化学习(RL)在安全至关重要的地区取得了非凡的成功,但可以通过广泛的攻击来削弱它。最近的研究引入了“平滑政策”,以增强其鲁棒性。然而,建立可证明的保证以证明其全部奖励的约束仍然是挑战。先前的方法主要依赖于使用Lipschitz的连续性或计算累积奖励的概率高于特定阈值的概率。但是,这些技术仅适用于对RL药物观察结果的继续扰动,并且仅限于受L 2 -Norm界定的扰动。为这些限制做好了限制,本文提出了一种称为Receps的一般黑盒认证方法,该方法能够直接证明在各种L p-Norm有限扰动下平滑政策的累积奖励。更重要的是,我们扩展了我们的方法,以证明对动作空间的扰动。我们的方法利用F-差异来确保原始分布与扰动分布之间的区别,然后通过解决凸优化问题来确定限制的认证。我们提供了全面的理论分析并在多种环境中进行实验。我们的结果表明,我们的方法不仅可以改善平均累积奖励的认证下限的紧密度,而且还表现出比最新方法更好的效率。
一、引言 很难为人工智能 (AI) 找到一个包罗万象的定义。欧盟政策文件将 AI 定义为通过分析环境并采取行动(具有一定程度的自主性)来实现特定目标而表现出智能行为的系统。AI 应用程序通过利用机器学习和大量数据进行训练以执行其任务。 1 AI 已成为我们日常生活中不可或缺的一部分,并正在改变我们的社会。传统的损害赔偿责任法概念和现有的监管框架对于涉及新技术的情况的适用性并不简单。 2 在欧盟,合同外责任主要由国家法律规定。这些规则以及某些欧盟法律规则可能不足以有效、可预测和公平地解决与 AI 相关的案件。与 AI 相关的损害并不一定与其他损害有太大不同,以至于直接证明制定全新的、全面的 AI 责任立法是合理的。然而,当涉及复杂的设备和价值链时,可能需要额外的立法。避免欧盟内部市场分裂的目标可能证明欧盟层面全面协调人工智能相关私人责任是合理的。这将为整个价值链中的利益相关者和受害方提供法律确定性。
1。巴黎大学,CNRS,Institut Jacques Monod,F-75013法国2。CEA,CEA,CNRS,CNRS综合生物学研究所(I2BC),法国F-91998 GIF-SUR-YVETTE,法国 *这些作者同样贡献了†对应:Maxim.greenberg@ijm.fr摘要,在哺乳动物的胚胎生成期间,两种甲基元素(5-Cyylimens)(5-Cyylimens)( (3D)在称为“表观遗传重编程”的过程中对染色质结构进行了深刻的重塑。表观遗传重编程的一个研究的方面是5mec通量本身如何影响3D基因组。 鉴于DNA结合对染色体折叠的关键调节剂的5mec-敏感性:CTCF。 我们使用小鼠胚胎干细胞(ESC)分化方案对CTCF结合景观进行了介绍,该方案模拟了幼稚多能的退出,其中全局DNA甲基化水平在四天内开始较低,并在四天内提高到躯体水平。 我们利用了这一事实,即缺乏DNA甲基化机制的小鼠ESC表现出全球相似的分化动力学,从而使CTCF不正调对基因表达的更微妙作用进行解剖。 我们通过在野生型和突变条件下进行CTCF HICHIP来评估异常的CTCF-CTCF接触,在没有5mec的情况下。 ,鉴于H3K27AC在主动启动子和增强子上富含H3K27AC,我们继续评估了错误调节的CTCF结合对顺式调节接触的影响。 使用DNA甲基化表观组编辑,我们能够直接证明DNA甲基马克能够影响CTCF结合。CEA,CEA,CNRS,CNRS综合生物学研究所(I2BC),法国F-91998 GIF-SUR-YVETTE,法国 *这些作者同样贡献了†对应:Maxim.greenberg@ijm.fr摘要,在哺乳动物的胚胎生成期间,两种甲基元素(5-Cyylimens)(5-Cyylimens)( (3D)在称为“表观遗传重编程”的过程中对染色质结构进行了深刻的重塑。表观遗传重编程的一个研究的方面是5mec通量本身如何影响3D基因组。鉴于DNA结合对染色体折叠的关键调节剂的5mec-敏感性:CTCF。我们使用小鼠胚胎干细胞(ESC)分化方案对CTCF结合景观进行了介绍,该方案模拟了幼稚多能的退出,其中全局DNA甲基化水平在四天内开始较低,并在四天内提高到躯体水平。我们利用了这一事实,即缺乏DNA甲基化机制的小鼠ESC表现出全球相似的分化动力学,从而使CTCF不正调对基因表达的更微妙作用进行解剖。我们通过在野生型和突变条件下进行CTCF HICHIP来评估异常的CTCF-CTCF接触,在没有5mec的情况下。,鉴于H3K27AC在主动启动子和增强子上富含H3K27AC,我们继续评估了错误调节的CTCF结合对顺式调节接触的影响。使用DNA甲基化表观组编辑,我们能够直接证明DNA甲基马克能够影响CTCF结合。最后,对印迹ZDBF2基因的详细解剖表明,CTCF的5mec-抗抗酸如何允许分化过程中适当的基因调节。这项工作提供了全面的概述,概述了DNA甲基化如何影响早期胚胎事件的相关模型中的3D基因组。
氨基酸改性石墨烯氧化石墨烯衍生物(GO-AA)作为活性材料,用于捕获和随之而来的有机污染物的电化学检测。草甘膦(gly)是许多水室中的双甲虫,被选为基准物种,以测试这些材料的电活性性质的有效性,从而可以直接证明捕获事件的证据。l-赖氨酸,L-精氨酸或L-蛋氨酸通过环氧环开口反应在GO表面移植,促进了氨基酸结合,并伴有GO的部分减少。合成过程导致电荷电阻从8.1kΩ下降到各种GO-AA的0.8 - 2.1kΩ,支持这些材料在电化学传感中的适用性。将所得的ly-赖氨酸,精氨酸和Go-Methionine剥削出来从水中吸附。Go-赖氨酸与Gly具有最强的相互作用,1小时后的去除效率为76%,比颗粒活性碳(工业基准的吸附剂)高约2倍。go-aas的效果优于原始的未修饰材料,当被用作捕获和在电化学检测Gly之后的主动材料时。Go-赖氨酸表现出最佳的敏感性,即使在浓度水平下降至2μg/L时也可以在水中识别Gly。mo lecular动力学模拟证实,该材料的增强性能可以归因于Lys部分和Gly之间的氢键和盐桥相互作用,该相互作用源自氢键和盐桥相互作用。
目标:CRISPR/Cas9 技术彻底改变了基因编辑,并加快了我们操纵目标基因的能力,以造福研究和治疗应用。尽管该领域已经取得了许多进展,并且还在继续取得进展,但迄今为止使用最广泛的技术可能是产生敲除细胞、组织和动物。该技术的优势是多方面的,但关于长期表达 Cas9 等外来蛋白质对哺乳动物细胞功能的影响,仍然存在一些问题。几项研究表明,Cas9 的慢性过度表达(无论是否伴有其伴随的向导 RNA)可能会对细胞功能和健康产生有害影响。在体内应用该技术时,这一点尤其令人担忧,因为 Cas9 在目标组织中的慢性表达可能会促进疾病样表型,从而混淆对目标基因影响的研究。尽管这些担忧仍然存在,但据我们所知,尚无任何研究直接证明这一点。方法:在本研究中,我们使用 lox-stop-lox (LSL) spCas9 ROSA26 转基因 (Tg) 小鼠系生成了四种组织特异性 Cas9-Tg 模型,这些模型在心脏、肝脏、骨骼肌或脂肪组织中表达 Cas9。我们对这些小鼠进行了全面的表型分析,直至 20 周龄,随后对其器官进行了分子分析。结果:我们证明 Cas9 在这些组织中的表达对动物的全身健康没有不利影响,也不会对全身能量代谢、肝脏健康、炎症、纤维化、心脏功能或肌肉质量产生任何组织特异性影响。结论:我们的数据表明,这些模型适用于使用 LSL-Cas9-Tg 模型研究基因缺失的组织特异性效应,并且利用这些模型观察到的表型可以自信地解释为基因特异性的,并且不会因 Cas9 的慢性过表达而混淆。2021 作者。由 Elsevier GmbH 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
目标:CRISPR/CAS9技术彻底改变了基因编辑,并快速跟踪了我们为研究和治疗应用的利益操纵感兴趣的基因的能力。虽然许多进步已经并且继续在该地区取得了成功,但迄今为止,最受使用的技术可能是敲除细胞,组织和动物的产生。这项技术的优点是许多折叠,但是关于外蛋白(例如Cas9)对哺乳动物细胞功能的长期表达的影响仍然存在一些问题。几项研究提出,CAS9的慢性过表达(无论是否伴随其伴随的指南RNA)可能会对细胞功能和健康产生有害影响。在体内应用这项技术时,这是特别关注的问题,其中Cas9在感兴趣的组织中的慢性表达可能会促进类似疾病的表型,从而使对感兴趣基因效应的研究混淆。尽管这些担忧仍然有效,但尚无对我们知识的研究直接证明这一点。方法:在这项研究中,我们使用了Lox-Stop-lox(LSL)SPCAS9 ROSA26转基因(TG)小鼠系列来生成四种组织特异性CAS9-TG模型,这些模型在心脏,肝脏,骨骼肌或脂肪组织中表达Cas9。,我们对这些小鼠进行了全面的表型,直到20周龄,随后对其器官进行了分子分析。2021作者。由Elsevier GmbH出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。结果:我们证明CAS9在这些组织中的表达对动物的全身健康没有不利影响,也没有诱导组织对全身能量代谢,肝脏健康,炎症,纤维化,纤维化,心脏功能或肌肉质量的任何特异性影响。结论:我们的数据表明,这些模型适合使用LSL-CAS9-TG模型研究基因缺失的组织特异性效应,并且使用这些模型观察到的表型可以用来构成基因,并且不能被基因特异性解释,而不是由Cas9 cas9的慢性过表达的混淆。