摘要。在许多应用中引起了硅化的形成,尤其是在微电子中的接触形成和互连。在此主题上发表了一些评论,本章的目的是通过重点关注新的实验结果来提供这些评论的更新。本章在理解主要机制(扩散/反应,成核,横向生长…)方面给出了一些进展(即在4至50 nm之间)。提出了有关硅质形成机制的最新实验结果,并将其与模型和/或模拟进行比较,以提取与反应性扩散相关的物理参数。这些机制包括成核,横向生长,扩散/界面控制生长以及扩散屏障的作用。几种技术的组合(包括原位技术(XRD,XRR,XPS,DSC)和高分辨率技术(APT和TEM)被证明是必不可少的,这对于在薄膜中的固态反应中获得了理解,并更好地控制这些反应以在微电机设备或其他应用程序中接触或其他应用。
简介:治疗记忆障碍对神经心理学家来说是一个巨大的挑战,他们越来越多地将非侵入性大脑刺激与传统的认知训练相结合。这项荟萃分析(在 PROSPERO 注册:CRD42023460773)研究了阳极经颅直流电刺激 (a-tDCS) 对进行性和非进行性脑损伤患者记忆的影响。材料和方法:从公开数据库中确定符合条件的随机对照研究 (RCT)。两名独立审阅者使用 Cochrane 标准评估偏见风险,并计算记忆结果的 Hedges' g 系数值。结果:分析中使用了 22 项 RCT(23 项实验,577 名参与者)的数据。一些研究的方法学质量存在轻微担忧。大多数实验在背外侧前额叶皮质上使用主动 a-tDCS,平均电流密度为 0.1 mA/cm²。效果大小分析显示短期记忆(g = 0.58,95% CI = 0.27-0.88)和延迟回忆(g = 0.45,p < 0.001,95% CI = 0.23-0.67)有显著改善。双侧刺激与整体效果显著相关,但人们对出版偏见和研究异质性表示担忧。亚组分析显示,与延迟回忆(g = 0.45 和 0.44)相比,短期记忆的效应大小略大(渐进组和非渐进组分别为 g = 0.4 和 0.72)。结论:A-tDCS 对各种神经系统疾病的记忆都有小到中等的积极影响。然而,由于样本量小、统计功效低、以及分析数据可能存在出版偏见,现在认可 a-tDCS 作为标准神经心理干预的可靠辅助手段还为时过早。
本论文讨论的另一个重要主题是 IGBT 模块的状态监测。为此,开发了一个功率循环测试台。选择 𝑉 𝐶𝐸(𝑜𝑛) 作为跟踪功率器件在整个循环测试过程中退化状态演变的参数。因此,构思并开发了一个在线 𝑉 𝐶𝐸(𝑜𝑛) 测量板。为了获得有关所应用循环协议的更多相关见解,开发了一种在线估计 IGBT 器件结温的策略,该策略基于卡尔曼滤波器的使用。该策略还能够通过分析热敏电参数来估计 IGBT 健康状态的退化程度。
已符合其他经典技术,例如电容 - 电压或深度瞬态光谱测量值,低频噪声测量是研究材料或设备质量和性能的最敏感工具之一[1]。例如,噪声测量值允许对传感器应用[2]或对半导体设备的深层光谱进行比较[3],并确定某些技术步骤或技术对设备性能降解的影响[4-7]。尽管有所有这些优点,但该技术的一个局限性很难删除所有外部低频噪声源,以确保所测量的噪声仅来自测试的设备或材料。在材料表征的情况下,众所周知,四探针配置足以消除DC甚至白噪声测量中的接触贡献。由于电压或电流触点可能会造成噪声贡献,因此1/F噪声不是这种情况。
隔离器是电子设备,可向控制器传输数字信号,同时还提供电流隔离,以提供用户界面和低压电路的安全电压水平。它们具有广泛的应用,包括工业,汽车,消费者和医疗电子产品,每个应用都需要特定的最低隔离水平。隔离的基本形式由光学,电容和磁耦合提供[1]。隔离器必须通过几个监管标准才能将其发布到市场。这些包括可靠性测试,例如承受电压和电压电压以及高压耐力(HVE)。承受电压和电涌电压是相对较快的持续时间测试,但是,HVE可能需要几个月到几年才能完成[2]。目前的工作基于对磁耦合隔离器中使用的材料的隔离能力的评估。为了更好地管理隔离器的可靠性测试,最好事先优化组件材料。在这项工作中,我们讨论了处理效果对隔离器中使用的各种材料及其在电崩溃之前的行为的影响。聚酰亚胺(PI)是
摘要:目前,在欧洲的几条铁路网络中,使用传统的直流电气化系统,既无法增加交通量,也无法使机车以标称功率运行。轨道旁储能系统 (TESS) 可以作为新建变电站的替代解决方案。TESS 限制接触线电压下降并平滑高峰交通期间吸收的功率。因此,可以在限制成本和环境影响的同时提高电力系统的效率。本文提出了一种基于全 SiC 隔离 DC/DC 转换器的 TESS 新拓扑,该转换器与锂离子电池和电流隔离相结合,为运行安全提供了重大优势。发生故障时,转换器的输入和输出端子将电气分离,并且接触线电压绝不会直接施加到电池上。此外,使用 SiC MOSFET 可以获得具有高开关频率的出色效率。本文第一部分介绍了基本 TESS 模块的主要特性,第二部分针对 1.5 kV 直流线路的典型情况提出了一种尺寸确定方法,该方法表明了使用 TESS 增强电源的局限性。最后,介绍了基本模块原型的实验结果。
抽象的经颅直接电流刺激(TDC)已成为中风后运动康复的潜在辅助疗法。虽然传统的康复方法仍然是中风后改善运动功能的主要方法,但许多患者经历了不完整的康复,因此需要探索其他干预措施。本评论文章探讨了TDC在中风后运动恢复中的作用,重点介绍其机制,功效和局限性。在此,强调了研究结果和个体患者反应的变异性以及在本地临床环境中优化TDC使用的推荐方法。关键字:经颅直流刺激,无创脑刺激引入中风后运动障碍是缺血性和出血性中风的普遍后果,影响了全球数百万的人。运动缺陷,包括无力,痉挛和协调受损,导致严重的残疾和生活质量降低。1旨在减轻这些缺陷的常规康复,主要涉及物理(PT)和职业治疗(OT)。,尽管康复延长,但许多中风幸存者的功能恢复有限,需要进行辅助疗法。经颅直流刺激(TDC)是一种新兴的非侵入性脑刺激技术,它表明了增强中风患者神经可塑性和运动恢复的潜力。2虽然早期研究表明有希望的结果,但诸如个人变异性和不一致的发现等挑战继续阻碍其广泛的应用。在马来西亚,采用TDC作为中风后运动恢复的辅助疗法以及对该技术的本地研究的可用性。据作者所知,目前仅在一些教学医院,私立医院和一个政府康复中心提供此服务。 但是,没有有关其在卫生医院中使用的信息。 迄今为止,只有一个案例系列和的技术报告据作者所知,目前仅在一些教学医院,私立医院和一个政府康复中心提供此服务。但是,没有有关其在卫生医院中使用的信息。迄今为止,只有一个案例系列和
超出财务负担,外部传感器的使用提出了另一个挑战 - 对PCB董事会空间的需求。鉴于电子设备的微型化趋势,保存董事会空间至关重要,尤其是在尺寸受限的应用中,例如智能锁,打印机和真空机器人。外部传感器占据了宝贵的房地产,这可能使设计紧凑的系统具有挑战性。通过消除这些外部传感器,我们可以从表1中可以看到,波纹计数可以将总设计尺寸降低85%。工程师不再需要连接到电动机背面的PCB。此减少为更简化的设计铺平了道路,从而促进了整合到溢价空间的各种应用中。
全年被雪和冰覆盖,远离其他大陆,南极是唯一没有永久人口的大陆。尽管环境高度不大,但该大陆的战略,地理,科学和经济质量一直激发了人类利益。根据国家南极计划管理者理事会(COMNAP)的信息,有76个研究站,还有更多的营地,避难所,庇护所和仓库,分散在整个南极洲大陆,代表33个国家。所有这些设施都是支持南极科学家的工作和生活的平台。尽管南极研究站的建筑物与其他常规的科学研究建筑或住宅建筑有许多相似之处,但由于地理位置,气候和气象,在设计,建筑,运营和维护期间仍存在许多差异。电力也有许多差异