摘要 - 在这项工作中,我们检查了不对称的沙普利谷(ASV),这是流行的Shap添加剂局部解释方法的变体。ASV提出了一种改善模型解释的方法,该解释结合了变量之间已知的因果关系,并且也被视为测试模型预测中不公平歧视的一种方法。在以前的文献中未探索,沙普利值中的放松对称性可能会对模型解释产生反直觉的后果。为了更好地理解该方法,我们首先展示了局部贡献如何与降低方差的全局贡献相对应。使用方差,我们演示了多种情况,其中ASV产生了违反直觉归因,可以说为根本原因分析产生错误的结果。第二,我们将广义添加剂模型(GAM)识别为ASV表现出理想属性的限制类。我们通过证明有关该方法的多个理论结果来支持我们的学位。最后,我们证明了在多个现实世界数据集上使用不对称归因,并使用有限的模型家族进行了使用梯度增强和深度学习模型的结果进行比较。索引术语 - 解释性,摇摆,因果关系
1.0摘要,尽管他们共享的统计基础,但土木工程中的经验得出的代码规定和方程式与面对机器学习(ML)模型的怀疑主义形成鲜明对比。本文通过结构工程的角度研究了这种哲学张力,并探讨了ML挑战传统工程哲学和专业身份的挑战。最近的工作已经记录了ML如何提高预测精度,优化设计并分析复杂行为。但是,人们可能还会引起人们对人类直觉和算法的解释性下降的关注。为了展示这一很少探索的前面,本文介绍了如何通过扣除,归纳和绑架来成功地将ML成功整合到各种工程问题中。然后,本文确定了采用ML时可能出现的三个主要悖论:分析瘫痪(提高了预测准确性,导致对物理机制的理解降低),不可行的解决方案(优化的解决方案(优化导致挑战工程直觉的挑战)和Rashomon效应(在其中解释了能力方法和物理学方法)。本文通过解决这些悖论,并认为有必要重新考虑工程和工程教育和方法论的认识论转移,以将传统原则与ML协调。
游戏开发人员为不可玩的角色创建的人工智能是开发完全充实的视频游戏的最重要部分之一。即使该主题是行业的重要组成部分,但它没有足够的讨论,并且关于该主题的文档通常缺乏。本论文的目的是寻找创建一种人工智能的最常见解决方案,该解决方案具有直觉,并帮助玩家沉浸在自己正在玩的游戏中。目标是研究这些解决方案并找出它们的使用方式。
neo4j是以其性能,无界规模,安全性和数据完整性而闻名的市场领先图数据库,尤其是对于关系至关重要的应用程序。neo4j是唯一与Amazon Bedrock完全集成的企业级和直觉数据库,可在维护安全性和隐私保护措施的同时提供上下文。一起,他们使开发人员能够构建解决复杂业务问题的应用程序,并利用生成的AI来扩大生成的见解以提高生产率。
指定TFS(图2.b底部面板;图2.C底部面板中的高级表达)。S吸引力状态的189个差异与实际生物系统中干细胞中谱系指定的TFS 190的共表达水平有关[11,50]。从直觉上讲,从布尔模型的视图中,seg 191细胞状态([[0,0]状态)需要打开谱系指定的TF到Transit 192
摘要:计算机辅助合成规划 (CASP) 旨在帮助化学家利用他们的实验、直觉和知识进行逆合成分析。机器学习 (ML) 技术(包括深度神经网络)的最新突破显著改善了无需人工干预的数据驱动合成路线设计。然而,通过 ML 学习化学知识进行实际合成规划尚未充分实现,仍然是一个具有挑战性的问题。在本研究中,我们开发了一个集成了各种逆合成知识的数据驱动 CASP 应用程序“ReTReK”,该应用程序将知识作为可调参数引入有希望的搜索方向的评估中。实验结果表明,ReTReK 成功地根据指定的逆合成知识搜索了合成路线,表明使用该知识搜索的合成路线比没有该知识的合成路线更受欢迎。将逆合成知识作为可调参数集成到数据驱动的 CASP 应用程序中的概念有望提高现有数据驱动的 CASP 应用程序和正在开发中的应用程序的性能。 ■ 引言自20世纪60年代以来,各种计算机辅助合成规划(CASP)应用程序被开发出来以模拟化学家的思维并帮助有机合成化学家开展工作。1 − 9 CASP 应用程序在合成的可定义部分(例如化学结构的特征和逆合成树的大小)中发挥了重要作用,而合成的不可定义部分(例如化学家的直觉)和在逆合成分析中贡献创造力的机会则留给了化学家。1作为化学家的直觉,Corey 形式化了逆合成的概念(逆合成知识)和主要类型的策略(例如基于变换和拓扑的策略)。他指出,通过同时使用尽可能多的不同的独立策略可以最有效地进行逆合成分析。 10 对于最优策略的选择,化学家的化学知识和他们的实验至关重要;特定合成问题的最优策略取决于所涉及的分子、人员和情况(例如,先导化合物的优化和候选药物的大规模合成)。11
在两个实际应用程序中,在两个方面(例如项目和用户,项目和市场)之间的匹配是必不可少的任务。双方图匹配已被研究为模拟这两个方面之间的这种匹配的基本问题[1]。通常应用了两分匹配的加权变体,以从相关的权重和在两部分图上定义的某些全局目标函数方面找到最佳的匹配。个体权重可以代表各种指标,例如价格,距离,时间和概率。匹配的现实世界应用包括儿童与学校之间的匹配[2,3],资源分配[4,5]和运输[6,7]。在另一类设置中,可以在某些概率语义上定义边缘的权重以表示直觉现象[8]。从与匹配有关的优化观点,尤其是在运输方面,使用模糊逻辑进行直觉现象的其他相关研究可以在库马尔[9,10]中找到。以前,已经研究了参与者(例如平台/服务提供商和个人用户)所需的几个全球属性,以进行双分部分匹配。一个例子是考虑与所陈述的偏好稳定匹配(例如,关于另一侧的项目的偏好)[11]。代表首选项的其他示例包括使用排名的元素列表来表示偏好和使用实用程序值来量化偏好(例如[12--14])。
