13 Fort Future 是一个基于网络的协作规划系统,它使用模拟来测试国防部 (DoD) 设施的计划。它使用开放的面向服务的架构,允许从同一组替代方案同时运行多个模拟,并将其组织成一个研究。基于网络的工作台提供基于地理信息系统 (GIS) 的计划编辑器,控制模拟并将结果组织成决策矩阵。Fort Future 使用“虚拟设施”模拟来评估关键基础设施对任务的影响,该模拟包含运输、电力、水系统模型,包括水载化学/生物/放射 (CBR) 剂、空气中的 CBR 羽流、设施、任务任务和流程、代理和动态计划。POC:美国陆军工程兵团、工程师研究与发展中心、建筑工程研究实验室 (CERL)、Michael P. Case 博士,Michael.P.Case@erdc.usace.army.mil
关联粒子系统出现在现代科学的许多领域,代表了自然界中最难解决的计算问题之一。当相互作用变得与其他能量尺度相当时,这些系统中的计算挑战就会出现,这使得每个粒子的状态都依赖于所有其他粒子 1 。三体问题缺乏通解,强关联电子缺乏可接受的理论,这表明当粒子数或相互作用强度增加时,我们对关联系统的理解就会逐渐减弱。相互作用系统的标志之一是多粒子束缚态的形成 2–9 。在这里,我们开发了一个高保真可参数化的 fSim 门,并在一个由 24 个超导量子比特组成的环中实现自旋-½ XXZ 模型的周期量子电路。我们研究这些激发的传播,并观察它们对多达 5 个光子的束缚性质。我们设计了一种相敏方法来构建束缚态的少体谱,并通过引入合成通量来提取它们的伪电荷。通过在环和附加量子位之间引入相互作用,我们观察到束缚态对可积性破坏的意外恢复力。这一发现与不可积系统中的束缚态在其能量与连续谱重叠时不稳定的想法相悖。我们的工作为相互作用光子的束缚态提供了实验证据,并发现了它们在可积性极限之外的稳定性。
食品基金会是一家独立的慈善机构,旨在应对英国公众利益解决食品体系中的挑战。在学术界与政策制定者(议员,公务员,地方当局,商业领袖)之间的界面工作,我们使用广泛的方法来实现变革,包括事件,出版物,媒体故事,社交媒体运动和多方利益相关者的伙伴关系。我们还收到了公众的广泛直接意见,以确保他们的生活经验反映在我们的政策建议中。我们与许多合作伙伴在一系列不同的主题领域合作,与学者保持联系,以创造证据和竞选者可以推动变革。我们独立于所有政党和企业,不受一个问题或特殊利益的限制。
摘要在本文中探讨了子系统在页面曲线中的共同信息所起的作用。与由黑洞和辐射组成的总系统以及岛上的包含,我们观察到,B +和B-之间的互信息消失了,这又意味着纠缠楔的断开相对应于B + b + b--,产生了乱七八糟的时间。这会导致与正确页面曲线一致的鹰辐射的细粒度熵的时间独立表达。我们还发现了以对数和反向幂定律形式的熵和页面时间的纠正。从重力理论的角度来看,信息损失悖论一直是最基本的问题之一[1,2]。对于蒸发的黑洞,已经表明,相对于观察者的时间,辐射单调的熵增加。但是,单一进化的过程要求在蒸发过程结束时这种熵消失。为此而言。在物质崩溃之前,全曲片上的量子场状态是纯净的,在黑洞蒸发后应保持相同。此外,页面曲线[3,4]描绘了辐射熵的时间依赖性。页面曲线有效地通过引入称为页面时间t p的时间尺度来解决信息丢失悖论的问题。根据页面曲线的信息损失悖论可以理解如下。霍金辐射的细粒度熵是由黑洞外部区域R上的量子场的von Neumann熵确定的。现在假设完整的cauchy片上的状态为纯状态,辐射s(r)= s(r c)的细粒熵,其中s(r c)可以理解为纤维粒的熵
为了衡量建筑物中频繁的负载灵活性的潜力,重要的是要了解控制系统如何监视和管理整个建筑物中的能源。图表4提供了参考,以了解控制系统实现负载灵活性的能力。负载灵活性在图4中的频谱右侧的控制系统中最有效。这种控制级别使自动化能够处理整个建筑物跨建筑物的优化,从而使建筑物经理可以“设置并忘记它”,并在
Laboratoire de Physicochimie des polyme et des Intfaces,Cy Cergy Paris Univers E,5 Mail Gay Lussac,95000,95000,Neuville-Sur-Oise,法国B Changsha半导体技术与应用创新创新创新研究所,国际科学与技术创新基金会的高级范围,纽约学院,学院,学院,学院,学院,学院,学院,匈牙利大学,校园学院( Changsha,410082,中国C能源转换和存储系,丹麦技术大学,2800,公里。Lyngby,丹麦d低维材料研究中心,马来亚大学物理系,吉隆坡,50603,马来西亚E化学与生物化学系,亚利桑那州亚利桑那大学,图森大学,亚利桑那州,亚利桑那大学,亚利桑那州,85721-0088
蛋白质蛋白相互作用的抽象截断SH3结构域的膜重塑桥梁整合剂1(BIN1,Amphiphysin 2)蛋白会导致中心核肌病。在这里,我们使用常规的体外和基于细胞的测定方法评估了一组自然观察到的,以前未经表征的BIN1 SH3结构域变体的影响,从而监测与Dynamin 2(DNM2)相互作用的相互作用,并确定了可能有害的,并且还可以暂时连接到神经肌肉肌肉肌肉disorders。然而,SH3领域通常是滥交的,并且预计除了DNM2以外,迄今为止,BIN1的其他伴侣也参与了Centronuclear肌病的发展。为了阐明这些其他相关的相互作用伙伴,并为BIN1 SH3域变体背后的病理机理的整体描绘,我们使用了亲和力相互作用。我们确定了数百种新的BIN1相互作用伙伴蛋白质组,其中许多似乎参与细胞分裂,这表明BIN1在调节有丝分裂中的关键作用。最后,我们表明已鉴定出的BIN1突变确实会导致蛋白质组广泛的亲和力扰动,这表明采用了无偏见的亲和力相互作用方法的重要性。
引言尽管技术的步伐似乎每年都会以巨大的飞跃而迅速提前提高,但组织必须谨慎做出反应,在投资之前考虑技术成熟度。如果采用技术过早,它可能会导致整体系统稳定性或安全性问题,如果不尽快采用它,组织可能会发现他们自己落后于竞争对手。我们应该关注什么,面对这些挑战,我们应该采取什么行动?这两个问题对于那些设计和计划相互联系的综合系统的人至关重要,并且鉴于现在有多少挖掘技术影响了我们的生活,这对几乎每个人都至关重要。为了解决这个问题,我们采取了Delphi研究的形式,这是一种众所周知的预测技术。我们采访了一系列受人尊敬的未来主义者,以了解他们如何看到新数字技术的不同方面及其与2040年到2040年相互联系的计算的互动。从这些访谈中,我们产生了一系列预测。然后,为了建立更完整的图片,我们回到受访者身上,并要求他们对初始预测的反应和评论。在本文中,我们探讨了五个出现的预测和六项建议干预措施。因此,本文的目的是帮助政策制定者和技术专业人员在这五个预测中使用这些信息来开发和部署新颖的计算机技术进行战略决策。本文的其余部分如下。“背景”部分探讨了未来预测的艺术。“相互联系的研究方法”部分着眼于预测
很大一部分人口都在使用膳食补充剂,但有关其药理相互作用的信息并不完整。为了应对这一挑战,我们推出了 SUPP.AI,这是一款用于浏览从生物医学文献中提取的补充剂-药物相互作用 (SDI) 证据的应用程序。我们训练一个模型来自动提取补充剂信息并从科学文献中识别此类相互作用。为了解决缺乏用于识别 SDI 的标记数据的问题,我们使用与识别药物-药物相互作用 (DDI) 密切相关的任务的标签进行监督。我们使用标记的 DDI 数据对 RoBERTa 语言模型的上下文词表示进行微调,并应用微调后的模型来识别补充剂相互作用。我们从 2200 万篇文章(P=0.82、R=0.58、F1=0.68)中提取了 195000 个证据句子,涉及 60000 次交互。我们创建了 SUPP.AI 应用程序,供用户搜索由我们的模型提取的证据句子。SUPP.AI 旨在通过让研究人员、临床医生和消费者更容易发现有关 SDI 的最新证据来弥补膳食补充剂的信息差距。
近年来,HAPTICS从人类计算机相互作用(HCI)领域受到了极大的关注,因为它的潜力提供了更明显,更沉浸式的界面。在这项工作中,我提出了对触觉研究的精选审查,以尝试为HCI和其他领域提供理解触觉的框架,以帮助这些领域设计更好的接口,并最终为每天与技术互动的人提供新的,更好的体验。此论文集将读者暴露于触觉领域,触觉感和一些触觉技术的例子。因此,它们涵盖了五十年的研究和术语,这对于任何研究人员来说都是方便的参考。在结论中,我根据自己的经验来检查历史,并提供对触觉,HCI以及两个社区可以为改善研究和设计所做的事情的看法。