1 S.Sapna博士1 1 Sri Ramakrishna妇女艺术与科学学院计算机科学系助理教授,印度哥印拜陀,泰米尔纳德邦摘要:随着数字技术渗透到日常生活,了解人类计算机互动(HCI)的动态(HCI)变得越来越重要。本研究调查了用户体验设计和认知心理学的交集,以增强交互式系统的可用性。本文旨在提供人类计算机相互作用(HCI)的概述,该领域致力于了解人类如何与计算机相互作用。HCI可以定义为对人和计算机之间创建用户友好接口的方法,原理和技术的研究。虽然计算机缺乏理解人类情绪或感受的能力,但必须告知他们如何在各种情况下做出适当反应。为了促进这种理解,采用了各种技术和原理,旨在使计算机响应与用户期望保持一致。与众多设备进行交互简化了用户任务,HCI在日常生活中的重要性变得显而易见。最终,HC I反映了测试和完善界面设计的持续过程,这极大地影响了用户在不同情况下与技术互动的方式。索引 - 认知,设计,数字,人类 - 计算机交互,界面,原理,技术,技术。
• 本文件所含信息仅与已知或疑似的相互作用药物的影响有关,如有注明,则来自 FDA 批准/授权的 PAXLOVID 标签。辉瑞不建议或推荐以完整处方信息中所述以外的任何方式使用 PAXLOVID。• 药物清单仅供参考,并非可能与 PAXLOVID 相互作用或禁忌使用药物的完整清单。如果药物未在完整处方信息或本资源中列出,则不应假定与 PAXLOVID 共同使用是安全的。请查阅 PAXLOVID 完整处方信息和 FDA 批准/授权的共同使用药物标签,以获取有关所列相互作用及其治疗出现的不良事件的信息,以及与强效 CYP3A 抑制剂(如利托那韦)同时使用时的剂量或监测。 • 未给出或暗示任何临床建议,医疗保健提供者必须自行判断药物组合的风险和益处,这取决于两种药物之间药代动力学相互作用以外的因素。 • 在考虑每种药物的组合、药代动力学、药效学和安全性概况时,在本例中为 PAXLOVID 和其他药物,可考虑本文件以帮助识别潜在的相互作用来源。辉瑞尚未进行任何研究来评估 PAXLOVID 与其他药物联合使用的安全性和有效性。医疗保健提供者可以考虑以下信息和 PAXLOVID 完整处方信息中的信息,以确定 PAXLOVID 与特定(药物类别)/药物的组合是否适合患者使用。 • 本文件中的信息仅供医疗保健提供者根据 FDA 授权标签开具 PAXLOVID 处方时作为教育性背景信息。如果您是遇到医疗紧急情况的消费者/患者,请立即拨打 911 并与您的医疗保健提供者交谈。此信息不应取代医疗保健提供者基于临床判断的医疗建议,也不应在必要时代替 COVID-19 咨询。
摘要 植物与微生物之间的相互作用显著影响着植物的行为、生长和进化。许多微生物物种,如细菌、真菌、病毒和古菌,它们在植物的根际、叶际和内际定殖,参与了这些复杂的关联。根据微生物的特性和功能以及它们对植物的影响,这些相互作用可能是有利的,也可能是有害的。植物与微生物之间的积极关系对于营养吸收、抗逆性和抗病性至关重要。植物相关微生物可以通过多种方法提高营养的利用率,包括固氮、磷酸盐溶解和铁动员。它们还可以产生促进植物生长发育的植物激素。此外,某些有益微生物可作为生物防治剂,抑制病原体生长并保护植物免受疾病侵害。复杂的分子信号网络,如植物和微生物之间的化学信号流,经常促进这些相互作用。另一方面,某些微生物会感染植物,导致严重的产量损失。植物可能通过伤口、环境中的孔洞或直接的植物组织渗透而感染病原体。它们会产生化学物质和酶,干扰植物的防御能力并损害其免疫系统。病原体还会阻碍营养物质的摄入并干扰正常的生理功能,从而损害植物的健康。为了实现可持续农业和生态系统的正常运作,必须了解植物-微生物相互作用的微妙之处。利用有利的相互作用可以创造创新技术,包括生物肥料、生物防治剂和生物修复。这些策略有可能减轻农业对环境的影响,同时增加作物产量并减少化学投入。植物-微生物相互作用的研究已经因下一代测序技术、组学技术和生物信息学的进步而发生了改变
了解胺与金纳米粒子表面之间的相互作用非常重要,因为它们在稳定纳米系统、形成蛋白质冠层以及制备半合成纳米酶方面发挥着重要作用。通过使用荧光光谱、电化学、X 射线光电子能谱、高分辨率透射电子显微镜和分子模拟,可以详细了解这些相互作用。本文表明,胺与纳米粒子表面 Au(0) 原子相互作用,其孤电子对的强度与校正空间位阻后的碱度呈线性相关。结合动力学取决于金原子的位置(平面或边缘),而结合模式涉及单个 Au(0) 和位于其上方的氮。一小部分仍然存在的表面 Au(I) 原子被胺还原,产生更强的 Au(0)-RN。 +(RN . ,失去一个质子后)相互作用。在这种情况下,结合模式涉及两个 Au(0) 原子,它们之间有一个桥接氮。当蛋白质参与(至少部分参与)金离子的还原时,可以更好地获得稳定的金纳米粒子,就像稳健的半合成纳米酶制备所需的那样。
因突变或翻译后修饰 (PTM) 而产生的替代蛋白质-蛋白质相互作用 (PPI),称为表型转换 (PS),对于替代致病信号的传递至关重要,在癌症中尤其重要。近年来,PPI 已成为合理药物设计的有希望的靶标,主要是因为它们的高特异性有助于靶向与疾病相关的信号通路。然而,在分子水平上存在障碍,这些障碍源于相互作用界面的性质以及小分子药物与多个裂隙表面相互作用的倾向。难以识别可作为激活剂或抑制剂来抵消突变的生物学效应的小分子,这引发了以前从未遇到过的问题。例如,小分子可以紧密结合,但可能不能作为药物或结合到多个位点(相互作用混乱)。另一个原因是蛋白质表面没有明显的裂隙;如果存在口袋,它可能太小,或者其几何形状可能阻碍结合。 PS 源自致癌(替代)信号传导,可导致耐药性并构成肿瘤系统稳定性的基础。本综述研究了与靶向药物设计和开发相关的 PPI 界面特性。此外,还讨论了用作药物的三种酪氨酸激酶抑制剂 (TKI) 之间的相互作用。最后,通过计算机模拟确定了其中一种药物的潜在新靶点。
以下笔记是为 2023 年在圣保罗举行的 ICTP-SAIFR 学校“光与冷原子的相互作用”准备的。它们旨在支持“原子-光相互作用和基本应用”的入门课程。该课程分为 5 个讲座和一个奖励。冷原子云是研究光物质相互作用基本现象的理想平台。强大的原子冷却和捕获技术的发明导致了对所有相关自由度的前所未有的实验控制,以至于相互作用由弱量子效应主导。本课程回顾了物理学这一领域的基础,强调了光力对原子运动的作用。将讨论由许多原子对入射光的协同反应引起的集体和自组织现象。该课程面向研究生,要求本科生具备量子力学和电磁学的基本知识。讲座将由每堂课结束时提出的练习补充。本笔记主要摘录自一些教科书(见下文)和更深入的脚本,可在网站 http://www.ifsc.usp.br/ ∼ strontium/ 的菜单项“教学”−→“Cursos 2023-1”−→“ICTP-SAIFR 博士前学校”下查阅以供进一步阅读。建议准备和进一步阅读以下文献:
坦佩雷理工大学技术学系。出版号 1448 坦佩雷理工大学。出版号 1448 Jussi Aaltonen 飞机液压系统中自举式储液器和液压泵的相互作用技术博士学位论文,经批准后,将于 2016 年 12 月 20 日中午 12 点在坦佩雷理工大学 Festia 大楼 Pieni Sali 1 礼堂进行公开审查和评论。坦佩雷理工大学技术学系 - 坦佩雷理工大学 坦佩雷 2016
但是,如果创新更多的是在标准之上实施和增值,那么主要的兴趣就是让技术得到广泛采用,因此 RF 是主要的许可模式。如上所述,当涉及到标准化和开源项目的关系时,RF 许可的可用性非常有利。因此,FRAND 条款通常被视为与开源许可的条款和条件不相容,因此,许多全球领先的 SDO 2 都在市场上建立了免版税政策,允许在开源中不受阻碍地实施开放标准。另一个需要考虑的方面是创新发生在哪里。软件行业热切地接受了开源,对于许多组织来说,开源已经成为他们创新的主要场所之一,从单一的内部创新转向标准机构本身的创新。在这些情况下,开放的协作创新发生在标准化之前,RF 是软件标准开发的唯一明智选择。
Qubit和一个超导谐振器Senlei Li 1,Shane P. Kelly 2,Jingcheng Zhou 1,Hanyi Lu 3,Hanyi Lu 3,Yaroslav Tserkovnyak 2,Hailong Wang 1,*,*和Chunhui Rita Rita Rita Rita Rita du 1,3加利福尼亚大学,加利福尼亚州洛杉矶分校的天文学90095,美国3加州大学圣地亚哥分校,美国加利福尼亚州92093,美国 *相应的作者:hwang3021@gatech.edu; cdu71@gatech.edu摘要:由多种材料组成的混合系统具有不同的物理性能和可调互动,为实现变革性量子创新提供了有希望的途径。固态自旋矩和超导电路由于其互补的设备性能和量子机械性能而在这种情况下脱颖而出。在这里,我们报告了单个氮呈(NV)自旋量子置量和芯片上超导谐振器的实验整合,以实现多模式量子应用。具体来说,我们已经观察到超导性增强了NV自旋弛豫,该弛豫显示了相似的希贝尔 - 塞子峰特征。在连贯的相互作用方向上,我们表明超导谐振器模式能够激发NV Rabi振荡。利用扫描NV磁力测定法,我们进一步可视化了超导谐振器的微观电磁行为,揭示了纳米级超导涡流的形成和演变。我们的结果强调了利用NV中心和超导电路设计混合系统以推动迅速发展的量子革命的潜力。当前的研究还将为测试和评估微型超导电子产品的未来设计和性能改进的新途径。
摘要——本研究对文献进行了系统回顾,并提出了权力结构与供应链决策之间相互作用的概念框架。本系统回顾研究了 1994 年至 2020 年期间在同行评审期刊上发表的 281 篇研究论文,并使用内容分析和网络可视化主要主题和关键词。进行了主题分析,以研究文献中日益激烈的讨论并确定研究差距。本综述的结果强调了企业对企业 (B2B) 关系中的权力结构组成部分,包括其对公司决策的影响。过去的文献表明,公司可以有意利用和行使来自各种来源的权力来影响供应链决策的过程和结果。研究结果展示了组织权力文献中讨论的权力机制和普遍的决策领域:定价、质量管理、可持续性、联盟建设、采购、投资、库存、产品开发和权力转移努力。本文的主要贡献在于,它对权力结构在供应链决策中的作用进行了重要的综合分析,确定了 7 个新主题和相关的未来研究途径。对于管理者和决策者来说,这项研究有助于提高情境意识,以理解供应链合作者之间的权力结构。这种意识可能有助于管理者识别未来供应链决策的威胁和机遇。