增加受控原子和量子比特的数量的一个基本前提是允许应用相应量信号的微结构,例如B.通过整合微波线路。这是通过叠加结构实现的,类似于多层电路板。 PTB 结构由一组厚金属导体层组成,这些层彼此通过电介质隔开,并通过通孔选择性地相互连接。原则上,金属层的数量是不受限制的,因为每一层都具有高度精确的整体平面化。该工艺仅使用符合环境超高真空对原子和离子捕获的严格要求以及低温操作的材料;此外,该结构的高频特性非常优异。
在公海中,被称为浮游植物的微小藻类漂浮在阳光照射的表层水中,将太阳能转化为食物能量。然而,浮游植物无法在某些河口的泥水中生长。相反,这些河口的大部分初级生产是由沼泽植物、底栖藻类和鳗草进行的,它们大量生长在河口的沼泽和泥滩(低潮时露出水面的泥地)中。这些植物构成了河口食物链的燃料,即动物吃植物,动物又吃植物,从而在这个过程中传递食物能量(见图 C)。然后,各种不同的食物链相互连接,形成河口食物网。
摘要 — 电力系统包括多个单元,这些单元相互连接以产生不断移动的电力通量。稳定性在电力系统中非常重要,因此应在发电厂实施控制器系统,以确保电力系统在正常情况下或在出现不需要的输入和紊乱事件后保持稳定。频率和有功功率控制在稳定性方面更为重要。我们的工作重点是基于遗传算法设计和实施鲁棒的 PID 和 PI 控制器,通过改变发电机组的参考值来更快地抑制频率振荡。在理想状态和参数偏差的情况下,对两区域电力系统进行了实施结果检查。根据结果,所提出的控制器可以抵抗电力系统参数的偏差和调速器的不确定性。
此外,设备和机器也相互连接,包括移动工具(螺丝刀等)、托盘、容器、移动手推车、生产机器、机器人、单元,甚至整个全自动和自主装配线(因此被视为简单的连接对象)。这些连接要么是最近安装的本地连接,要么是通过已连接到生产环境的现有应用程序(MES、SCADA、HISTORIAN 等)建立的,要么使用额外的传感器提供。事实上,现在将各种传感器(工业物联网)——简单或复杂——放在机器、容器或现有基础设施上都非常简单。然而,在驱动机器和生产流程时,情况会更加困难。在这种情况下,通过 LES、MES 或 SCADA 等专门应用程序进行连接通常是不可避免的。
4 当地场所 :上述三种人力资源得以展现、连接并参与生产性集体行动的主要舞台是人造环境和自然环境。小型、当地、有界场所,人们将其视为共享场所:邻里、村庄、城镇等,提供了一个最佳阈值,在此阈值内,这些资源可以相互建立正确的关系,从而相互连接和动员。除了为礼物交换、款待和展现丰富性提供理想的环境外,当地有界场所还充满了对社区生活至关重要的各种实用资源。从我们呼吸的空气到我们照料的社区花园,再到我们偶然遇到邻居或聚在一起进行深度交流的地方,我们的共享场所植根于我们的社区体验。
使用 12 瓦直流齿轮电机,内置齿轮,可将速度从 1000 rpm 降低到 250 rpm。与电机相连的滑轮通过连杆相互连接,以相继运行。这三个重物在充电过程中逐一提升,并使用同一台电机放电。混凝土块用作重物,以修改电机功率的功率范围并缓慢放电。用于支撑重物和驱动滑轮的绳索两侧都有结,以触发链接以驱动另一台电机,另一个小自由轮滑轮用于将重物引导到下方,所有组件都安装在带有电气连接的木制框架上。
自从证实并验证人类神经系统由单个细胞(后来被称为神经元)组成,并且发现这些细胞相互连接形成广泛的通信网络以来,在知识领域的多个学科中应用的大量可能性就已出现。神经网络被创建来执行诸如模式识别、分类、回归等许多服务于人类的功能,并且是机器学习和人工智能领域的重要组成部分。在计算机科学方面,已经取得了进展,计算机应该学会如何解决类似人脑的问题。通过预先设定的示例,计算机必须能够为类似于训练期间出现的问题提供解决方案。本文概述了神经网络及其在开发计算机系统中的应用。
在各种自动化行业中,无线活动是必需的,特别是在危险或危险区域的偏远地区。在许多行业中,需要处理一些非常热的工作,而人手无法做到,在这种情况下,无线操作效率更高。该项目专注于使用微控制器在 X-bee 和无线传感器网络的帮助下设计手势控制的机械臂。它由两部分组成,通过无线传感器通信系统相互连接。X-bee 将充当发射器和接收器设备系统。主要部分由装有锂离子电池、微控制器和柔性传感器的手套组成。第二部分由电机、微控制器和机器人手指组成,机械动作通过它们发生。