下一代商用飞机模型具有网络设施,使机载系统能够相互通信以及与机外系统通信。这一新功能使网络应用程序能够为飞机制造、运营和维护流程带来诸多好处。然而,与此同时,也引入了可能威胁机载系统的漏洞。欧洲航空安全局和美国联邦航空局等监管机构认识到,前所未有的网络化飞机模型可能会影响长期存在的安全法规和指导。在本文中,我们重点关注特定网络应用程序的安全,即飞机可加载软件的电子分发。数据网络的使用为安全关键和业务关键的飞机软件的破坏提供了机会。本文介绍了我们提出的安全框架,用于识别对飞机软件分发的威胁并减轻这些威胁。此外,还讨论了分发安全方面的挑战以及网络化飞机安全性方面的未解决的问题。
这些网络模仿生物神经网络,尽管它们使用的是生物大脑系统中发现的原理的子集。特别是 ANN 模型模仿大脑和神经系统的电活动。处理元件(也称为神经元或感知器)相互通信。人工神经网络由三个或更多相互连接的层组成。第一层由输入神经元组成。这些神经元将数据发送到更深的层,更深的层将最终输出数据传送到最后的输出层。内层都是隐藏的,由单元构建,这些单元通过一系列转换自适应地将接收到的信息从一层更改为另一层。每一层都充当输入层和输出层,使 ANN 能够理解更复杂的事物。这些内层统称为神经层。为了得到解决方案,ANN 使用数据样本而不是整个数据集,这样既节省时间又节省金钱。ANN 是用于改进现有数据分析技术的简单数学模型。
无线传感器网络 (WSN) 具有远程环境监测和目标跟踪等重要应用。这得益于近年来出现的更小、更便宜、更智能的传感器。这些传感器配备了无线接口,可以相互通信以形成网络。WSN 的设计在很大程度上取决于应用,必须考虑环境、应用的设计目标、成本、硬件和系统约束等因素。我们调查的目标是全面回顾自 [I.F. Akyildiz、W. Su、Y. Sankarasubramaniam、E. Cayirci,传感器网络调查,IEEE 通信杂志,2002] 出版以来的最新文献。按照自上而下的方法,我们概述了几个新的应用,然后回顾了有关 WSN 各个方面的文献。我们将问题分为三个不同的类别:(1)内部平台和底层操作系统,(2)通信协议栈,以及(3)网络服务、配置和部署。我们回顾了这三个类别的主要发展并概述了新的挑战。� 2008 Elsevier B.V. 保留所有权利。
幼儿大脑在生命的头两年中,大脑迅速增长,实际上体重增加了三倍。蹒跚学步的日常生活也会影响大脑的发育,因为他们在经历的一切过程中脑细胞相互连接。神经元是大脑中的基本神经细胞,由于称为树突的分支样纤维,这些细胞相互通信。树突通过称为突触之间的小差距从其他神经元中接收消息。他们所经历的景象,声音,纹理和品味在大脑中创建了新的联系。大脑中的连接将变得永久。重复创造永久性在学习语言中尤其重要,因为当孩子多次听到相同的单词或短语时,他们会学会理解语音并加强大脑中的语言联系。某些连接不会通过重复加强,这些连接最终被修剪了。大脑修剪经验的行为实际上增强了积极重复的联系。有助于建立神经元连接的活动:
量子密钥分布(QKD)是确保对攻击者进行通信的最佳候选人,他们将来可能会利用量子增强的计算能力来打破经典的加密。因此,我们需要大规模部署QKD系统而引起了新的挑战。在现实的情况下,从不同的供应商传输和接收设备应该能够相互通信,而无需匹配硬件。因此,QKD的实际部署将需要能够适应不同协议和时钟速率的硬件。在这里,我们通过提出一个多速率的多率,多率的QKD发射器来应对这一挑战,该发射器链接到相应的适应性QKD接收器。通过光学注入锁定实现的发射器的灵活性使我们能够将其与两个接收器连接起来,并具有固有不同的时钟速率。此外,我们演示了发射器的多协议操作,并与采用不同解码电路的接收方进行交流。
传统系统基于一次性输入的静态参数。这些参数可以随时更改,但只能手动更改。WICKIE M 基于自学习 plc。相关数据通过传感器记录。然后,ki 算法根据记录的数据计算预测,并根据该预测控制执行器。这里的决定性因素是所有相关参数都通过 WICKIE M 相互通信和交互。 WICKIE M 可以通过建筑总线系统与空调、遮阳、灯光和房间内人员互动,在楼宇自动化中节省高达 25% 的能源。仅根据房间使用预测在必要时控制执行器。确保与房间内实际人员同步。以前的时间控制总是必须适应使用的变化 - WICKIE M 可以自我调整,并且还可以从单个房间控制扩展到完整的能源管理。WICKIE M 的智能基于使用神经网络的时间序列预测。lstm 技术(长短期记忆)使该神经网络非常强大。机器学习算法将记录的数据收集到数据库中,识别数据中的模式,不断更新计算模型并生成预测。
ASCII 是一种允许计算机相互理解和通信的标准。在 ASCII 中,每个字符(字母、数字和符号)都有其独特的代码。例如,字母“A”用二进制数 01000001(65)表示,而“a”用二进制数 1100001(97)表示。该系统帮助计算机了解在屏幕上显示哪些字符或如何将它们存储在内存中。因此,当您在键盘上键入字母时,计算机会将其转换为相应的 ASCII 代码以了解您在说什么。ASCII 使计算机能够相互通信,也使我们通过键入的文本与计算机轻松交互。另一种编码方案是 Unicode,这是一种较新的标准,通过为每个字符分配 16 位来克服 ASCII 可以表示的字符数的限制。扩展 ASCII 是 Unicode 的子集(包含其前 256 个字符)。 Unicode 的目标是为每个字符提供一个唯一的编号,无论平台、程序或语言如何,从而为文本表示创建一个全球标准。
我们大脑中的神经元如何产生电活动峰值?神经元如何相互通信?神经元群如何协同作用以产生对我们的生活如此重要的心理活动?如果您已经考虑过这些问题,并且想要的不仅仅是一个挥手的答案,那么计算神经科学就是您的课程。对任何过程的严格理解都要求我们能够用数学方程来表达该过程。当一个过程像单细胞的电压动态一样复杂,甚至像我们大脑中许多这样的细胞的连贯操作一样复杂时,我们必须简化底层的数学描述,并使用计算机模拟来测试数学方程是否正确描述行为。在本课程中,您将学习这些技能,这些技能原则上可以推广到任何复杂系统的研究。我们的课程是“半翻转”的,50%由教授讲授,50%由课堂辅导。学生将在每节课前完成必读内容,以获得课程内容。学生将在每节课前对阅读内容进行评论或提问/回答问题,并获得学分。
对于信息系统,硬件被定义为任何有助于输入、处理、存储和输出活动的机器。同样,对于计算机来说,硬件是执行输入、处理、数据存储和输出功能的设备的集合。换句话说,计算机系统的所有物理单元都构成了计算机硬件。输入设备从外界获取数据,数据存储在内存中。中央处理单元 (CPU) 处理这些数据,各种输出设备提供结果。组件通过系统总线相互通信。每个硬件组件在计算中都发挥着重要作用。即使在今天,系统内组件的排列方式也是冯·诺依曼在 1945 年提出的存储程序计算概念,被称为冯·诺依曼架构。智能设备使用互联网或组织网络,充当信息处理器和信息提供者。智能设备是一种电子设备,通常通过不同的无线协议(如蓝牙、Wi-Fi 等)连接到其他设备或网络,可以在一定程度上交互和自主运行。它们可以用于从智能制造到医疗保健的几乎所有行业,帮助提高效率和优化运营。
ASCII 是一种允许计算机相互理解和通信的标准。在 ASCII 中,每个字符(字母、数字和符号)都有其独特的代码。例如,字母“A”用二进制数 01000001(65)表示,而“a”用二进制数 1100001(97)表示。该系统帮助计算机了解在屏幕上显示哪些字符或如何将它们存储在内存中。因此,当您在键盘上键入字母时,计算机会将其转换为相应的 ASCII 代码以理解您在说什么。ASCII 使计算机能够相互通信,也使我们通过键入的文本与计算机轻松交互。另一种编码方案是 Unicode,这是一种较新的标准,通过为每个字符分配 16 位来克服 ASCII 可以表示的字符数的限制。扩展 ASCII 是 Unicode 的子集(包含其前 256 个字符)。 Unicode 的目标是为每个字符提供一个唯一的编号,无论平台、程序或语言如何,从而为文本表示创建一个全球标准。