本研究致力于应用利用场相位特性的地电控制补偿法来检测和定位地球动力学过程。与通常用于分析观测结果的电磁场异常分量的振幅参数相比,地电信号的相位配准法具有较高的抗噪性。开发了一种使用场相位特性来解释监测数据和相关地球动力学过程定位问题的形式化方法。在该方法的框架内,提出了通过加权均方解释误差和包含有关地电剖面先验信息的正则函数的最小和来确定剖面参数。为了检查球形溶洞的定位可能性,模拟了沿安装剖面移动球心时场电位的振幅和相位异常分量以及非均匀定位的标准误差。模拟表明,与不均匀位置具有良好的潜在区分度,在不均匀定位问题中,通过结合使用幅度和相位场分量可以获得最高的定位精度。
摘要:混合半导体 - 超导体纳米线构成了一个普遍存在的平台,用于研究栅极可调的超导性和拓扑行为的出现。其低维和晶体结构柔韧性有助于独特的异质结构生长和有效的材料优化,这是准确构建复杂的多组分量子材料的关键先决条件。在这里,我们对INSB,INASSB和INAS纳米线上的SN生长进行了广泛的研究,并演示了纳米线的晶体结构如何驱动半金属α -SN或超导β -SN的形成。对于INAS纳米线,我们观察到相纯超导β-SN壳。但是,对于INSB和INASSB纳米线,初始外延α -SN相变成共存α和β相的多晶壳,其中β /α的体积比随SN壳厚度而增加。这些纳米线是否表现出超导性,不批判性地依赖于β -SN含量。因此,这项工作为SN阶段提供了各种半导体的关键见解,这对适合生成拓扑系统的超导杂种产量产生了影响。关键字:纳米线,拓扑材料,半导体 - 螺旋体混合动力,SN,量子计算,界面,外交T
性质症(AA)是一种罕见的,威胁生命的疾病,其特征是细胞质和骨髓衰竭。然而,自从引入不抑制性疗法和同种异体干细胞移植以来,结果已大大改善,据报道5年生存率为70%-90%。在刚果中,缺乏现代生存数据。我们进行了一项重新观察研究,以描述2017年至2023年Brazzaville临床血液学医院诊断为AA患者的流行病学,诊断和治疗特征。化学诱导的性植物被排除在研究之外。Camitta标准用于对AA的严重性进行分类。总共有45例确认的病例,并提供了35个文件为描述性研究提供了足够的数据。Me -dian年龄是26岁(范围:1-50)。成年人占研究人口的75%。性别比为1.05(儿童为0.5,成人为1.17)。AA的一例是伊马替尼梅赛酸盐治疗的继发;其他病例(97.1%)是特发性的。全年减少症。中度,严重且非常严重的AA占病例的11.4%,74.3%和14.3%。成人(77.4%vs.22.6%)和男性的严重和非常严重的形式更为常见。9例患者(26%)接受了环孢菌素单位。只有一个定期接受治疗,并获得了唯一有利的反应。没有患者收到ATG或Eltrombopag。18例患者(占病例的51.4%)失去了失败。出血综合征是由于血小板浓缩液的不易去的,是最常见的死亡原因(6例中有4例)。中位随访时间为28.7(1-96)个月。总而言之,
简介 - 当两个石墨烯层用相对扭曲角θ相互旋转时,扭曲的双层石墨烯(TBG)形成。在一组相称的角度θI[1]下,该系统构成了一个完美的结构结构(“ Moir´e lattice”),其中Bloch的定理适用。此外,对于所谓的“魔术角”,已经预测了靠近电荷中性点附近的扁平频率的消失的费米速度[2,3]。第一个魔术角被发现为θ〜1。05°[4]。 在2018年,TBG围绕第一个魔术角进行了调整,显示出隔热阶段[5]靠近圆顶圆顶阶段[6]旁边的Holelike Moir´e Minibands的半填充[5],类似于Cuprates [7]中发生的情况[7]。 是,已经预测和观察到了相关的阶段,例如异常的霍尔·弗罗曼德主义[8,9]和量子霍尔效应[10,11],并且与非琐事Chern数字[12-14]有关。 观察到的超导性(SC)通常归因于存在产生破碎对称性状态[15-18]和奇怪金属行为的电子配对机制,[19-22],但也讨论了电子 - phonon配对[23,24]。 在扭曲的N层石墨烯中进一步观察到相似的相关效应和鲁棒SC,以2≤n≤5[25]。 值得注意的是,在n> 2的情况下,Pauli限制违反了约3倍的限制[25-28],这加强了这些分层系统中的SC确实是非常规的观念[29 - 32]。 这可以05°[4]。在2018年,TBG围绕第一个魔术角进行了调整,显示出隔热阶段[5]靠近圆顶圆顶阶段[6]旁边的Holelike Moir´e Minibands的半填充[5],类似于Cuprates [7]中发生的情况[7]。是,已经预测和观察到了相关的阶段,例如异常的霍尔·弗罗曼德主义[8,9]和量子霍尔效应[10,11],并且与非琐事Chern数字[12-14]有关。观察到的超导性(SC)通常归因于存在产生破碎对称性状态[15-18]和奇怪金属行为的电子配对机制,[19-22],但也讨论了电子 - phonon配对[23,24]。在扭曲的N层石墨烯中进一步观察到相似的相关效应和鲁棒SC,以2≤n≤5[25]。值得注意的是,在n> 2的情况下,Pauli限制违反了约3倍的限制[25-28],这加强了这些分层系统中的SC确实是非常规的观念[29 - 32]。这可以由于电子系统以强耦合极限在强[33 - 41]中实现的出现的Uð4Þ对称性,因此很难解决不同对称性破坏模式之间的竞争。尽管与可以通过电掺杂的铜层相比,这些Moir´e系统似乎得到了很好的控制,但在精确的相图上仍然没有共识,这些相图应敏感地取决于周围的介电环境[21,42]。
摘要 — 通过比较穿过传感臂和参考臂的光信号,干涉光子传感器使用简单的单波长激光源实现了显著的灵敏度和检测限。原则上,通过比较穿过单个传感波导的两种模式的传播,基于双模波导的传感器可以在不需要参考臂的情况下提供相同的优势。然而,双模传感器的典型实现面临两个挑战:(i) 传感器输入和输出处的突变模式激发和重组效率低下、功率不平衡且产生可能掩盖小传感信号的杂散反射,(ii) 输出信号的正弦性质可能导致读出模糊。这里我们提出了一种螺旋状双模折射率传感器,它具有全模式转换、多路复用和解复用以及相干相位检测,可提供具有紧凑而稳健布局的明确线性相位读出。我们的传感器设计为1550 nm 中心波长,在氮化硅平台上制造,并通过体传感实验验证,检测限达到 1. 67 · 10 −7 RIU。
NSUC1610 是通过反电动势的大小来进行堵转检测,在马达相位未通电期间,可以检测到 BEMF 电压。但这 不包括全步进模式,因为两个相位始终通电。以下假设在微步进模式下检测失速,BEMF 电压与电机转速成 正比,这样可以判断电机是否运行。由于只有在一相未通电的情况下才能进行测量,因此对 BEMF 电压的观 察非常有限。对于理想的电机,在没有任何负载和损耗的情况下,转子将随着定子磁场持续旋转,并且在相电 流为零时,可以看到 BEMF 电压的峰值。对于实际电机和外加负载,转子将始终滞后于定子磁场。此负载相关 相位滞后将导致固定测量点处 BEMF 电压的负载相关变化。在零相位滞后的情况下,可以测量 BEMF 电压峰 值,并且只能看到反电势与速度的相关性。在与负载变化的情况下,反电势会产生相位滞后,BEMF 电压将从 峰值将出现偏移,当这个电压大于或者小于一个阈值时,这就标志着检测到失步点,电机运动将停止。BEMF 电压测量仅在零电流阶跃期间启用。在零电流阶跃结束时,采样和测量最后一次 BEMF 电压值。这可确保线 圈电流达到零,且 BEMF 电压实际可见。根据电机参数、速度和阶跃模式,零阶跃可能会变短,并且无法获得 明显的 BEMF 电压。此时则无法检测失速。失速检测仅在匀速运动期间进行,在加速或减速期间,BEMF 电压 可能非常低,则不会启用失速检测。具体电流波形如图 2.5 所示:
可编程的光子集成电路正在成为量子信息处理和人工神经网络等应用的有吸引力的平台。但是,由于商业铸造厂缺乏低功率和低损耗相变的速度,当前可编程电路的尺度能力受到限制。在这里,我们在硅光子铸造厂平台(IMEC的ISIPP50G)上演示了具有低功率光子微电体系统(MEMS)的紧凑相位变速器。该设备在1550 nm处达到(2.9π±π)相移,插入损耗为(0.33 + 0.15 - 0.10)dB,AVπ为(10.7 + 2.2 - 1.4)V,和(17.2 + 8.8-4.3)的Lπ。我们还测量了空气中1.03 MHz的致动带f -3 dB。我们认为,我们对硅光子铸造型兼容技术实现的低损坏和低功率光子磁化相位变速杆的证明将主要的障碍提升到可编程光子集成电路的规模上。©2021美国光学协会根据OSA开放访问出版协议的条款
量子计算技术的最新进展已导致嘈杂的中间量子量子计算机(NISQ 1)的实现,其性能出色。2–8但是,NISQ设备只是迈向实现量表的通用量子计算机的一半。这不可避免地需要支撑量子校正(QEC)的逻辑单元,9一个目标,其成就超出原理级别的成就似乎与当前的技术能力相距甚远。的确,基于多量表编码的标准QEC代码会大大增加物理量子和操作的数量,从而使对这种平台的控制非常苛刻。在这里,我们基于利用罪恶的多级对象来编码受错误保护的逻辑量子的基础,采用不同的方法。10
((* 3KDVH &DQ %H 3UHGLFWHG :LWK 6LPLODU $FFXUDF\ $FURVV &RJQLWLYH 6WDWHV $IWHU $FFRXQWLQJ )RU 3RZHU DQG 615 .LP % (ULFNVRQ % $ )HUQDQGH] 1XQH] * 5LFK 5 0HQW]HORSRXORV * 9LWDOH )0HGDJOLD - 'HSDUWPHQW RI 3V\FKRORJLFDO DQG %UDLQ 6FLHQFHV 'UH[HO 8QLYHUVLW\ 'HSDUWPHQW RI %LRHQJLQHHULQJ 8QLYHUVLW\ RI 3HQQV\OYDQLD &HQWHU IRU 1HXURHQJLQHHULQJ DQG 7KHUDSHXWLFV 8QLYHUVLW\ RI 3HQQV\OYDQLD &HQWHU IRU 1HXURWUDXPD 1HXURGHJHQHUDWLRQ DQG 5HVWRUDWLRQ &RUSRUDO 0LFKDHO - &UHVFHQ] 9HWHUDQV $IIDLUV 0HGLFDO &HQWHU 'HSDUWPHQW RI 1HXURORJ\ 8QLYHUVLW\ RI 3HQQV\OYDQLD 'HSDUWPHQW RI 3K\VLFDO 0HGLFLQH DQG 5HKDELOLWDWLRQ 8QLYHUVLW\ RI 3HQQV\OYDQLD 'HSDUWPHQW RI 1HXURORJ\ 'UH[HO 8QLYHUVLW\ &RUUHVSRQGHQFH VKRXOG EH DGGUHVVHG WR HLWKHU $GGUHVV -RKQ ' 0HGDJOLD 3K' 'HSDUWPHQW RI 3V\FKRORJLFDO DQG %UDLQ 6FLHQFHV DW 'UH[HO 8QLYHUVLW\ &KHVWQXW 6WUHHW 3KLODGHOSKLD 3$ 7HOHSKRQH (PDLO MGP #GUH[HO HGX 25 $GGUHVV )ODYLD 9LWDOH 3K' 'HSDUWPHQW RI %LRHQJLQHHULQJ DW WKH 8QLYHUVLW\ RI 3HQQV\OYDQLD +D\GHQ +DOO 6PLWK :DON 3KLODGHOSKLD 3$ 7HOHSKRQH (PDLO YLWDOHI#SHQQPHGLFLQH XSHQQ HGX
成功实施了在串联perovskite光伏设备的顶部细胞中的成功实施,但受到卤化物种族隔离现象的阻碍,[27-29]遭受了混合的碘化碘 - 溴组成,用于实现宽带式的(> 1.7 ev [> 1.7 ev [22,23,23])。太阳光谱的高能部分。在带有袋中的照明下[27]或电荷载体注入,[30-32]这些伴侣经历了一个混合过程,从而形成了富含碘化物和溴化物的富相的局部区域。[33–36]去除外部刺激导致从隔离中恢复。[27,37–39]尽管这种可逆的相分离仅影响钙矿体积的少数族裔,[34,40]在空间上,空间不均匀的bandgap严重破坏了混合壁孔孔孔的适用性,不仅可以通过限制了频带的范围,而不仅会限制频带的范围,而且还限制了对频段的效果[41] [41] 41] [41] [41] [41–43]和重组,[44]并导致电压损耗。[40,45]因此,正如最近的几篇评论文章中列出的那样,已经大量的研究注意力用于理解这一案例以防止这种情况。[46–50]