图1。双分子反应系统分为两个阶段。(a)双分子反应a + b→c在两个相的速率常数两个相的模型中进行建模。所有分子都可以在两个阶段之间自由传播。(b)我们在模拟中改变了分区系数(𝐾)和体积比(𝑅)。(c)顶部:组件的更高分配加速反应(𝑅= 100)。底部:反应速率在非常小的凝聚力体积(𝐾= 10)的单相中收敛到单相的速率。(d)对于集合,当两相系统中的简单反应的相对速率增强(K两相 / k单相)当等于𝐾𝐾时是最佳的。插图显示了最大速率的最大速率与𝐾𝐾的𝑅。(e)对于较高的𝐾𝐾的值,反应的速率始终更高。较大的隔室对较小的𝐾𝑃的反应更大,而较小的隔室对于较高的𝐾𝑃的增加较大。(f)在𝑅=𝐾𝐾𝐾𝐾𝐾密集和稀阶段中包含相等量的反应物。(g)全范围和𝐾𝐾的整体速率增强的热图。
了解具有相关费米子的系统中的竞争不稳定性仍然是现代冷凝物理物理学的圣杯之一。在用于这种效果的费米子晶格模型中,由于其排斥性和有吸引力的版本与电子材料和人工系统的潜在相关性,扩展的Hubbard模型占据了主要位置。使用最近引入的多频道闪烁轨道方法,我们解决了有吸引力的扩展Hubbard模型中电荷密度波,S波超导性的相互作用,S波超导性。尽管该模型已经对数十年进行了深入研究,但我们的新方法使我们能够识别出以S波超导性和相位分离的共存为特征的新型阶段。我们的发现与以前对电子系统中相互作用相分离和超导相的观察结果产生了共鸣,最重要的是在高温超导体中。
成功实施了在串联perovskite光伏设备的顶部细胞中的成功实施,但受到卤化物种族隔离现象的阻碍,[27-29]遭受了混合的碘化碘 - 溴组成,用于实现宽带式的(> 1.7 ev [> 1.7 ev [22,23,23])。太阳光谱的高能部分。在带有袋中的照明下[27]或电荷载体注入,[30-32]这些伴侣经历了一个混合过程,从而形成了富含碘化物和溴化物的富相的局部区域。[33–36]去除外部刺激导致从隔离中恢复。[27,37–39]尽管这种可逆的相分离仅影响钙矿体积的少数族裔,[34,40]在空间上,空间不均匀的bandgap严重破坏了混合壁孔孔孔的适用性,不仅可以通过限制了频带的范围,而不仅会限制频带的范围,而且还限制了对频段的效果[41] [41] 41] [41] [41] [41–43]和重组,[44]并导致电压损耗。[40,45]因此,正如最近的几篇评论文章中列出的那样,已经大量的研究注意力用于理解这一案例以防止这种情况。[46–50]
3a,37075,德国戈丁根21 -Max Planck多学科科学研究所,基于NMR的结构生物学系,Fassberg,AM Fassberg 11,37077 Gottingen,德国22-纽约市纽约市纽约市的研究生中心,纽约市,纽约市,纽约市,纽约市,纽约市,纽约市,纽约市,纽约州立大学23-美国纽约,美国24-田纳西州孟菲斯圣裘德儿童研究医院结构生物学系25-田纳西大学田纳西大学健康科学中心微生物学,免疫学和生物化学系,美国田纳西州孟菲斯
图1。激光驱动的相位分离在SI底物上的无定形硅阵线(A-SI 0.4 GE 0.6)纳米级薄膜。a)sige薄膜中相位分离后激光写作和组成重新分布的示意图。b)两个激光加工的7 µm宽的多晶sige(多形晶体)的光图像以扫描速度1和10 mm s -1(标记为10 mm s -1),显示了富含GE的带状核心和富含Sii的较不固定区域。自然色对比度的差异揭示了依赖扫描速度的GE重新分布。c)3 µm宽的激光写的微纹条的光学图像,根据表面上的GE组成,从蓝色到黄色的天然色调。d)激光书面微带的SEM显微照片,在激光处理后显示样品表面的地形特征。e)后冰片的电子检测器(BSED)显微照片显示了富含GE(明亮)和富含Si的(深色)区域之间的材料对比度。f)以0.1 mm s -1的扫描速度编写的激光写的微条的放大SEM和g)bsed显微照片。h -l)与上述相同,但为10 mm s -1(h,i)和50 mm s -1(k,l)。