摘要 量子探测是利用简单量子系统与复杂环境相互作用来提取某些环境参数(例如环境温度或其光谱密度)的精确信息的技术。在这里,我们分析了单量子比特探测器在表征热平衡下的欧姆玻色子环境方面的性能。特别是,我们分析了调整探测器与环境之间的相互作用哈密顿量的影响,超越了传统的纯相位失调范式。在弱耦合和短时间范围内,我们以分析方式处理探测器的动力学,而在强耦合和长时间范围内则采用数值模拟。然后,我们评估量子 Fisher 信息以估计截止频率和环境温度。我们的结果提供了明确的证据,表明纯相位失调不是最佳的,除非我们将注意力集中在短时间内。特别是,我们发现了几种工作方式,其中横向相互作用的存在提高了最大可达到的精度,即增加了量子 Fisher 信息。我们还探讨了探针的初始状态和探针特征频率在确定估计精度中的作用,从而为设计优化检测以在量子水平上表征玻色子环境提供定量指导。
DK800SA/DK每50ns检测一次测量单元的移动长度,DK800SB每100ns检测一次测量单元的移动长度,并输出与移动量成比例的相位差。相位差量以50ns或100ns的整数倍变化。此外,DK800SA/DK的A相和B相的最小相位差为50ns,DK800SB的A相和B相的最小相位差为100ns。
例如,它们最近被用于壮观的引力波直接探测[7],物质波干涉仪也是基于波的分离和重组。与光学干涉仪相反,物质和光在这里交换角色:分束器和镜子是使用激光束实现的,并生成材料波叠加。最常用的布置之一是 Mach-Zehnder 几何,如图 7.1 所示。系综中的所有原子都一致地转变为两种不同状态的叠加,从而被引导到两条单独的路径上。经过自由发展时间 T(其中两条路径之间产生相位差)后,它们再次耦合在一起并相互干扰。这意味着,根据两个路径之间的相位差,在干涉仪输出处检测到不同的状态占用。然后可以使用该信号得出有关待测量量的结论。例如,如果相位差取决于磁场,则可以通过这种方式确定磁场
将具有相同频率和振幅的波信号相加,我们发现生成的信号也具有相同的频率,并且其振幅取决于原始信号的相位关系。如果相位差为 120 ° ,则生成的信号具有与任一原始信号完全相同的振幅。如果将它们同相组合,则生成的信号的振幅是任一原始信号的两倍。对于 l20 ° 和 240 ° 之间的相位差,生成的信号的振幅始终小于任一原始信号的振幅。如果两个信号的相位正好相差 180 ° ,则将完全抵消。
8 交流电路关系. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 8.1 简介 175 8.2 矢量 176 8.3 交流电路测量和值 178 8.4 交流电路中的电阻器 181 8.5 交流电路中的电感器 183 8.5.1 连接到交流电的电感器 184 8.5.2 电感器中的交流电流 185 8.5.3 相互串联的电感器 187 8.5.4 相互并联的电感器 190 8.6 交流电路中的电容器 192 8.6.1 连接到交流电的电容器 194 8.6.2 包含电容器的交流电路中的电流 196 8.6.3 串联电容器 197 8.6.4 并联电容器 199 8.7 电感器和电容器 200 8.8 相位差 204 8.8.1 超前和滞后 204 8.8.2 交流电路中电压和电流之间的相位差 206 8.8.3 使用矢量显示相位差 207 8.9 交流功率 208 8.9.1 阻抗 208 8.9.2 交流功率 208 8.9.3 功率因数 210 8.10 串联 RLC 电路 211 8.10.1 串联 RLC 电路中的功率因数 214 8.11 并联 RLC 电路 218 8.11.1 并联 RLC 电路中的功率因数 221 8.12 交流电路中的分压器 222
被解释为相位差 90 ◦,它显示 090 ◦ 径向指示或东。如图 5.3 中相位演示中所示的理想 VOR 罗盘。信号处于中间位置的点
如果我们将2个超导体彼此隔开,则被薄绝缘层隔开,则两个超导体之间的相位差(θ2-θ1)将导致超导库珀对的电流在超导体之间流动。电流没有电池!这是约瑟夫森效应。