超扫描是一种新兴技术,可同时扫描多个个体的神经动态以研究人际互动。特别是,使用无线脑电图 (EEG) 的超扫描越来越受欢迎,因为它具有移动性,并且能够在毫秒级的自然环境中解读社交互动。为了将多个 EEG 时间序列与单个时间域中的复杂事件标记对齐,需要精确统一的时间戳进行流同步。本研究提出了一种时钟同步方法,使用定制的 RJ45 电缆协调无线 EEG 放大器之间的采样,以防止由于异步采样而对脑间连接的错误估计。在这种方法中,模数转换器由相同的采样时钟驱动。此外,两个时钟同步的放大器利用额外的 RF 通道来保持其接收加密狗的计数器更新,从而保证加密狗接收到的与 EEG 时间序列绑定的事件标记具有正确的时间戳。两个模拟实验和一个视频游戏实验的结果表明,该方法可确保在具有多个 EEG 设备的系统中实现同步采样,实现接近零相位滞后,信号之间的幅度差异可忽略不计。根据所有信号相似性指标,该方法是无线 EEG 超扫描的一个有前途的选择,可用于精确评估社交互动行为背后的脑间耦合。
NSUC1610 是通过反电动势的大小来进行堵转检测,在马达相位未通电期间,可以检测到 BEMF 电压。但这 不包括全步进模式,因为两个相位始终通电。以下假设在微步进模式下检测失速,BEMF 电压与电机转速成 正比,这样可以判断电机是否运行。由于只有在一相未通电的情况下才能进行测量,因此对 BEMF 电压的观 察非常有限。对于理想的电机,在没有任何负载和损耗的情况下,转子将随着定子磁场持续旋转,并且在相电 流为零时,可以看到 BEMF 电压的峰值。对于实际电机和外加负载,转子将始终滞后于定子磁场。此负载相关 相位滞后将导致固定测量点处 BEMF 电压的负载相关变化。在零相位滞后的情况下,可以测量 BEMF 电压峰 值,并且只能看到反电势与速度的相关性。在与负载变化的情况下,反电势会产生相位滞后,BEMF 电压将从 峰值将出现偏移,当这个电压大于或者小于一个阈值时,这就标志着检测到失步点,电机运动将停止。BEMF 电压测量仅在零电流阶跃期间启用。在零电流阶跃结束时,采样和测量最后一次 BEMF 电压值。这可确保线 圈电流达到零,且 BEMF 电压实际可见。根据电机参数、速度和阶跃模式,零阶跃可能会变短,并且无法获得 明显的 BEMF 电压。此时则无法检测失速。失速检测仅在匀速运动期间进行,在加速或减速期间,BEMF 电压 可能非常低,则不会启用失速检测。具体电流波形如图 2.5 所示:
摘要:抑制控制是一种抑制反应的认知过程。它用于日常活动,例如驾驶摩托车、驾驶汽车和玩游戏。这个过程的影响可以与现实世界中的红灯进行比较。在本研究中,我们使用相位滞后指数和试验间一致性 (ITC) 研究了人类抑制控制下的大脑连接。人类大脑连接可以更准确地表示功能神经网络。脑电图 (EEG) 的结果(数据集是使用听觉停止信号任务从十二名健康受试者在左手和右手抑制期间生成的)表明,大脑额叶和颞叶的 delta (1-4 Hz) 和 theta (4-7 Hz) 波段功率的试验间一致性增加。这些 EEG delta 和 theta 波段活动神经标记与人类额叶的抑制有关。此外,通过视觉刺激,枕叶的 delta-theta 和 alpha(8-12 Hz)波段功率的试验间一致性有所增加。此外,与颞叶和枕叶相比,在抑制控制下,额叶 F3-F4 通道之间的大脑连接性最高。额叶中更高的 EEG 一致性和相位滞后指数与人类反应抑制有关。这些发现揭示了理解大脑连接的神经网络和人类反应抑制过程中的潜在机制的新见解。
表 1:研究中考虑的功能连接指标 FC 指标缩写类别参考瞬时相干性瞬时频谱相干性[31]虚相干性 ImCoh 频谱相干性[32]锁相值 PLV 相位估计[33]相位滞后指数 PLI 相位估计[34]平方 wPLI 的去偏估计量 wPLI2-d 相位估计[35]幅度包络耦合 AEC 幅度耦合[36、37]
所提出的发明是一种全数字共振搜索、跟踪和停留 (RSTD) 测试方法,其中非线性霍普夫振荡器产生连续正弦波信号。反馈产生的激励频率及其幅度用作振荡器的输入。霍普夫振荡器的主要优点是: 整个过程都是数字化的; 试件在其共振时由激励器激励,该激励器由频率和幅度变化的振荡信号驱动; 通过测量激励基准和试件响应(位置、速度或加速度)之间的相位滞后,激励频率跟踪试件的共振频率; 试件的振动幅度也受到控制; 振荡控制信号由一个自动平滑控制策略施加的频率和幅度变化的过程生成。
电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器的扩展温度范围、振动不敏感性和 EMI 兼容性、方向流量控制阀的数字机载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可以在恶劣环境中使用,安装在执行器本身上。这种布置改善了整个系统的响应时间和闭环控制性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和
电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器的扩展温度范围、振动不敏感性和 EMI 兼容性、方向流量控制阀的数字机载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可以在恶劣环境中使用,安装在执行器本身上。这种布置改善了整个系统的响应时间和闭环控制性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和
电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统来解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器具有扩展的温度范围、抗振动性和 EMI 兼容性,方向流量控制阀的数字板载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可在恶劣环境中使用,安装在执行器本身上。这种布置改善了闭环控制中的整体系统响应时间和性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和
本研究的目的是调查脑电图静息状态连接是否与智力相关。165 名参与者参加了这项研究。记录了每位参与者 6 分钟的闭眼脑电图静息状态。分别计算了两个完善的同步测量 [加权相位滞后指数 (wPLI) 和虚相干性 (iMCOH)] 以及传感器和源脑电图空间的图论连接指标。使用瑞文渐进矩阵测量非语言智力。根据神经效率假设,alpha 波段范围内的大脑网络路径长度特征(平均和特征路径长度、直径和接近中心性)与传感器空间的非语言智力显着相关,但与源空间无关。根据我们的结果,非语言智力测量的差异主要可以通过从包含节点之间弱连接和强连接的网络构建的图形指标来解释。
摘要 — 越来越多的证据表明,在汽车驾驶过程中,最佳大脑网络拓扑结构会随着疲劳的进展而改变。然而,功能连接对驾驶疲劳检测的判别能力程度仍不清楚。在本研究中,我们提取了两类特征(网络属性和关键连接)来探索它们在驾驶疲劳检测中的实用性。在模拟驾驶实验中,对 20 名健康受试者两次记录了脑电图数据。使用相位滞后指数建立多频带功能连接矩阵,作为以下图论分析和最警觉状态与疲劳状态之间关键连接的确定的输入。我们发现,在所有频带上,疲劳状态下的大脑网络都向效率较低的架构重组。进一步的询问表明,判别连接主要连接到额叶区域,即大多数增加的连接从额极到顶叶或枕叶区域。此外,我们使用β波段的判别连接特征获得了令人满意的分类准确率(96.76%)。我们的研究表明,图论特性和关键连接对于表现疲劳改变具有判别能力,并且关键连接是驾驶疲劳检测的有效特征。