摘要 较高的视线指向精度是提高光电干扰吊舱激光对抗能力的前提。传统光电吊舱中电视跟踪时延降低了系统相位裕度、系统稳定性及视线指向精度。针对这一不足,在两轴四框架结构的内框架位置环中引入归一化LMS算法来补偿电视摄像机时延,使吊舱避免系统相位裕度降低,同时采用快速反射镜系统来提高视线指向精度。首先,提出一种归一化LMS算法;其次,设计了一种外框架模拟控制器和内框架滞后超前控制器的复合控制结构;最后,分析了FSM波束控制精度。实验结果表明,归一化LMS算法几乎没有时延;而且,其方位角和俯仰波束控制精度较传统光电吊舱分别提高15倍和3倍。
摘要 — 统计技术经常用于预测电子系统的性能。工艺变化考虑了制造时材料参数的不确定性,会对模拟集成电路的产量产生不利影响。对由于制造参数变化而导致的模拟电路关键输出参数变化进行统计分析,以预测产量,是模拟芯片制造中必不可少的步骤。在这项工作中,我们使用严格的统计方法来检查典型模拟电路的性能。我们设计了一个 65 nm 技术的两级 CMOS 差分放大器配置,使用 ACM 模型参数来检查工艺变化下的产量。我们采用三种不同的蒙特卡罗模型(均匀、高斯、最坏情况)来检查设计的 CMOS 差分放大器关键性能参数的统计变化。据报道,在典型工艺参数变化 10% 的情况下,关键差分放大器参数、最大增益、增益裕度和相位裕度都会发生变化。在最坏情况分布的情况下,变化最大,而在高斯分布的情况下,变化最小。结果表明,工艺变异对设计的CMOS差分放大器的成品率有显著影响。在高斯分布的情况下,增益裕度(dB)、相位裕度(度)和最大增益(dB)的标准差分别为11、25和24。
教学大纲: 1. 模拟构建模块 1.1 简单电流镜;由于厄利效应和非理想性引起的问题;威尔逊和维德拉镜;使用镜子作为有源负载。 1.2 差分放大器 (DA) 级;使用半电路模型、共模和差模增益进行分析;共模抑制比 (CMRR)。 1.3 输出级;A 类、B 类和 AB 类输出级;效率;谐波失真。 2. 运算放大器设计 2.1 典型的运算放大器电路:输入差分级、CE 增益级和输出级;内部电路设计的细节:有源负载、电平转换、电流源。 2.2 非理想性:直流失调、输入偏置电流(导致失调);有限输入阻抗等。 2.3 斜率限制;增益带宽积;稳定性设计;单位增益反馈的概念;相位裕度;低频极点的设计以及使用米勒效应进行内部补偿。 3 反馈电路和振荡器 3.1 一般反馈配置;基本放大器增益、环路增益和闭环(总)增益。 3.2 反馈对增益、频率响应、失真、输入和输出阻抗的影响。 3.3 反馈电路配置:并联-串联、并联-并联、串联-并联和串联-串联反馈;稳定性分析;相位裕度
1 电子与仪器工程系,1 Shri GS 理工学院,印度中央邦印多尔 摘要:本文介绍了采用 CMOS 180nm 技术设计的前端光接收器。完成原理图后,通过 Cadence Virtuoso 工具进行仿真。在本设计中,作者使用的电源为 1.8V,频率范围在 1Hz 至 10GHz 之间,获得了各种参数的结果,例如 20μA 偏置电流、宽高比 W/L、输入共模电压范围在 800mv 和 1.72volts 之间。测量了开环增益等各种参数之间的权衡,并测量了开环增益、相位裕度等参数之间的权衡。获得的总增益为 98 dB。本文报告了模拟结果。索引词:模拟电路、两级运算放大器、宽高比、180nm、光接收器、CADENCE。
• 频率响应 • 伯德增益和相位图 控制系统分析和设计 • 传递函数、框图和信号流图 • 稳定性分析、瞬态性能、稳态误差 • 劳斯稳定性标准 • 根轨迹技术 • PI、PD 和 PID 控制器 • 极点和零点对系统响应的影响、极点-零点抵消 控制系统的频域分析和设计 • 伯德增益和相位图 • 增益和相位裕度、相对稳定裕度、稳健性 • 超前和滞后动态补偿 • 奈奎斯特图和奈奎斯特稳定性标准 矩阵数学 • 矩阵分解(Jordan、Schur、奇异值) • 非负定矩阵和正定矩阵 • 矩阵范数、广义逆 • 矩阵指数
• PMOS 选择 1. PMOS 的阈值电压 |V th | 的绝对值需要足够小,以便运算放大器能够打开和关闭 PMOS 栅极。 2. PMOS 的零栅极电压漏极电流 (I DSS ) 定义栅极电压等于 V bus 时的漏电流。I DSS 设置较低的 V out 范围。 3. 如果从运算放大器输出 (V o ) 到栅极的线路电阻过大,则 PMOS 栅极电容会影响稳定性。此电容在 1/ ꞵ 曲线中增加了一个零点。如果零点位于 1/ ꞵ 和 Aol 截距点的左侧,相位裕度会减小。因此,最好使用小的栅极电容。 4. 根据军用标准,漏极-源极击穿电压必须是 V bus 的两倍,至少需要 200V 的击穿电压。
介绍了一种使用简单单级辅助放大器的新型增益提升折叠共源共栅运算放大器。所提出的辅助放大器的设计方式是,无需使用共模反馈网络,即可获得适当的输入和输出直流共模电压。辅助放大器的输入端由耦合电容器和浮栅 MOS 晶体管隔离。因此,直流输入电压电平限制已被消除。辅助放大器的输出端也使用了二极管连接的晶体管,使输出电压电平保持在所需的水平。与更复杂的放大器相比,简单的单级辅助放大器对主放大器施加的极点和零点更少,而且功耗也更低。0.18μm CMOS 技术的仿真结果显示直流增益增强了约 20 dB,而输出摆幅、斜率、稳定时间、相位裕度和增益带宽几乎与之前的折叠共源共栅设计相同。
基于鳍式场效应晶体管 (FinFET) 的模拟电路正逐渐取代基于金属氧化物半导体场效应晶体管 (MOSFET) 的电路,因为其稳定性和高频操作而变得越来越重要。构成大多数模拟电路子块的比较器是使用运算跨导放大器 (OTA) 设计的。OTA 采用新的设计程序设计,比较器电路是将子电路与 OTA 集成在一起设计的。设计并集成了比较器设计的构建块,例如输入电平转换器、带有共源共栅级的差分对和用于输出摆幅的 AB 类放大器。在反馈路径中使用折叠共源共栅电路来将共模输入值保持为常数,以便差分对放大差分信号。比较器的增益达到 100 dB 以上,相位裕度为 65°,共模抑制比 (CMRR) 高于 70 dB,输出摆幅从轨到轨。该电路提供 5 GHz 的单位增益带宽,适用于高采样率数据转换器电路。
电感器是一种具有频率相关阻抗特性的电气元件;电感器在低频时表现出低阻抗,在高频时表现出高阻抗。虽然“理想”运算放大器输出阻抗特性为零,但“实际”放大器的输出阻抗是电感性的,并且像电感器一样随着频率的增加而增加。EL5157 的输出阻抗如图 2 所示。使用运算放大器的应用中的一个常见挑战是驱动电容负载。之所以有挑战性,是因为运算放大器的电感输出与电容负载一起形成 LC 谐振槽拓扑,其中电容负载电抗与电感驱动阻抗一起导致当反馈围绕环路闭合时产生额外的相位滞后。降低相位裕度会导致放大器振荡的可能性。振荡时,放大器会变得非常热,并且可能会自毁。针对这一挑战,有几个非常著名的解决方案。1) 最简单的解决方案是在输出端串联一个电阻,以强制反馈来自放大器的直接输出,同时隔离无功负载。这种方法的代价是牺牲负载上少量的输出电压摆幅。2) 另一个直接的解决方案是应用“缓冲网络”。缓冲网络是一个与电容负载并联的电阻和电容,在负载上提供电阻阻抗以减少输出相移;提供额外的稳定性。