正常海马中的波纹振荡(80-200 Hz)参与休息和睡眠期间的记忆巩固。在癫痫发作的大脑中,增加的波纹和快速波纹(200-600 Hz)频率可作为致癫痫大脑的生物标志物。我们报告称,波纹和快速波纹都表现出与海马癫痫发作起始区(SOZ)中睡眠慢波的谷峰(或开-关)状态转换耦合的优选相位角。海马 SOZ 中慢波上的波纹也比非 SOZ 中的波纹具有较低的功率、较高的频谱频率和较短的持续时间。内侧颞叶中的慢波调节了兴奋性神经元的基线放电率,但对与波纹相关的放电率增加没有显著影响。综上所述,病理性波纹和快波纹优先发生在致痫海马慢波开关状态转换过程中,且波纹不需要增加兴奋性神经元的募集。
我们提出了一种减少电路中非 Clifford 量子门(特别是 T 门)数量的方法,这是有效实现容错量子计算的重要任务。此方法与大多数基准电路中无辅助 T 计数减少的先前方法相当或优于后者,在某些情况下可带来高达 50% 的改进。我们的方法首先将量子电路表示为 ZX 图,这是一种张量网络结构,可以根据 ZX 演算规则进行变换和简化。然后,我们扩展了最近的简化策略,添加了一个不同的成分,即相位小工具化,我们使用它通过 ZX 图传播非 Clifford 相位以找到非局部抵消。我们的程序可不加修改地扩展到任意相位角和变分电路的参数消除。最后,我们的优化是自检的,也就是说,我们提出的简化策略足够强大,可以独立验证输入电路和优化输出电路的相等性。我们已经在开源库 P y ZX 中实现了本文的例程。
摘要 — 本文通过使用 DJIB 比较最佳可用阻抗标准,全面描述了频率高达 80 kHz 的双约瑟夫森阻抗桥 (DJIB),这些标准 (a) 可直接追溯到量子霍尔效应,(b) 用作国际阻抗比较的一部分,或 (c) 被认为具有可计算的频率依赖性。该系统的核心是双约瑟夫森任意波形合成器 (JAWS) 源,它在高精度阻抗测量中提供了前所未有的灵活性。JAWS 源允许单个桥在复平面上比较具有任意比率和相位角的阻抗。不确定度预算表明,传统 METAS 桥和 DJIB 在千赫范围内具有相当的不确定度。这表明 DJIB 具有灵活性,可以比较任意阻抗、频率范围宽和自动平衡程序,并且不会影响测量不确定性。这些结果表明,这种类型的仪器可以大大简化各种阻抗尺度的实现和维护。此外,DJIB 是一种非常灵敏的工具,可用于研究频率相关的系统误差,这些误差可能出现在阻抗构造中以及频率大于 10 kHz 的 JAWS 源提供的电压中。
利用光伏无功功率和储能有功功率可以解决光伏接入低压配电网带来的电压越限、网损、三相不平衡等问题,但低压配电网三相四线结构给潮流计算带来困难。为实现通过潮流最优来利用光伏,提出一种基于三相四线系统潮流最优的低压配电网光伏储能协同控制方法。考虑电压和电流的幅值和相位角,采用三相四线节点导纳矩阵建立低压配电网网络拓扑结构,以最小化网损、三相不平衡度和电压偏差为目标,考虑电压约束、反向潮流约束和中性线电流约束,建立了基于三相四线网络拓扑的多目标优化模型。通过改进节点导纳矩阵和模型凸性,降低问题求解的复杂度,利用CPLEX算法包进行求解,并基于某21节点三相四线低压配电网进行24 h多周期仿真,验证了所提方案的可行性和有效性。
美国太空监视网络 (SSN) 目前跟踪低地球轨道 (LEO) 上的 23,000 多个驻留空间物体 (RSO)。SSN 使用地面雷达和光学方法,这些方法易受大气、天气和光照条件变化的影响。这些障碍将监视能力限制在特征长度大于 10 厘米的物体上。因此,数十万个较小的 LEO RSO 仍未被跟踪,从而降低了整体太空态势感知能力。先前的研究已经证明了使用太空商用星跟踪器 (CST) 探测和跟踪特征长度大于 10 厘米的物体的可行性。我们在本文中提出的分析表明,CST 也可用于探测尺寸小于 10 厘米的碎片颗粒。我们将粒子建模为具有零相位角和 10% 反射率的朗伯球。碎片颗粒的视在目视星等表示为颗粒大小和 RSO-CST 距离的函数,并与各种 CST 的灵敏度水平进行比较。我们发现,在适当照明的情况下,一些 CST 甚至可以在数十公里的距离内探测到特征长度在 1 厘米到 10 厘米之间的碎片。更灵敏的 CST 可以识别数百公里外该尺度较大端(即 10 厘米)的 RSO;或者,它们可以在更近的距离内追踪小于 1 厘米的物体。
摘要 本文通过使用 DJIB 比较最佳可用阻抗标准,全面描述了频率高达 80 kHz 的双约瑟夫森阻抗桥 (DJIB),这些标准 (a) 可直接追溯到量子霍尔效应,(b) 用作国际阻抗比较的一部分,或 (c) 被认为具有可计算的频率依赖性。该系统的核心是双约瑟夫森任意波形合成器 (JAWS) 源,它在高精度阻抗测量中提供了前所未有的灵活性。JAWS 源允许单个桥在复平面上比较具有任意比率和相位角的阻抗。不确定度预算表明,传统 METAS 桥和 DJIB 在千赫范围内具有可比的不确定度。这表明 DJIB 的优势,包括允许比较任意阻抗的灵活性、宽频率范围和自动平衡程序,可以在不影响测量不确定度的情况下获得。这些结果表明,这种类型的仪器可以大大简化各种阻抗尺度的实现和维护。此外,DJIB 是一种非常灵敏的工具,可用于研究阻抗构造中以及频率大于 10 kHz 的 JAWS 源提供的电压中可能出现的频率相关系统误差。
摘要 - 该论文研究了操作技术,以通过派遣网格形成(GFM)逆变器来实现无缝(平滑)微电网(MG)过渡。在传统方法中,GFM逆变器必须在mg过渡操作期间在网格之后(GFL)和GFM控制模式之间切换。今天的逆变器技术允许GFM逆变器始终以GFM控制模式运行,因此值得探索如何使用它们实现光滑的MG过渡操作。本文提出了三种操作技术:在GFL和GFM控制之间切换的传统方案;一个新的计划,以一致的GFM控制并在岛屿操作前转移下垂拦截;以及一致的GFM控制并在同步操作之前移动下垂截距的新方案。建立了完整的硬件设置,以比较三种技术并在现实世界应用程序中展示其实现。结果表明,第三种技术优于其他技术并表现出最佳的过渡性能,因为GFM逆变器在过渡操作过程中保持相同的操作点。因此,我们得出的结论是,在过渡操作期间,确保平滑的MG过渡操作要求GFM逆变器(s)保持相同的工作点(V,F,F,P,Q和相位角),此外还可以最大程度地减少常见耦合功率流的点。
摘要 本报告总结了 NIST 信息技术实验室应用与计算科学部的技术工作。第一部分(概述)概述了该部门的活动,包括去年技术成就的亮点。第二部分(特点)详细介绍了今年特别值得注意的十个项目。接下来是第三部分(项目摘要),简要概述了过去一年中活跃的所有技术项目。第四部分(活动数据)列出了部门工作人员参与的出版物、技术讲座和其他专业活动。本文件涵盖的报告期为 2009 年 10 月至 2010 年 12 月。如需更多信息,请联系 Ronald F. Boisvert,邮寄地址 8910,NIST,马里兰州盖瑟斯堡 20899-8910,电话 301-975-3812,电子邮件 boisvert@nist.gov,或访问该部门的网站 http://www.nist.gov/itl/math/index.cfm 。封面可视化:黎曼 theta 函数的模数 5,0),| ,(ˆ≤≤y x y i x iΩθ,其中Ω是http://dlmf.nist.gov/21.4中定义的矩阵。表面颜色对应于相位角。该图像源自NIST数学函数数字库(http://dlmf.nist.gov/),由Brian Antonishek,Qiming Wang和Bonita Saunders开发。致谢:我们感谢Robin Bickel收集信息并组织本报告的初稿。免责声明:本文件中可能会标识某些商业实体,设备或材料,以便充分描述实验程序或概念。此类标识并不意味着美国国家标准与技术研究院的推荐或认可,也不意味着实体,材料或设备必然是最适合该目的的。
摘要:分形几何始终为多个电磁设计问题提供解决方案。本文使用分形几何(例如希尔伯特曲线和摩尔曲线)来设计高效的高阻抗表面。现代通信设备有许多传感器需要进行无线通信。无线通信的关键组件是天线。平面微带贴片天线因其低轮廓、紧凑和良好的辐射特性而广受欢迎。微带天线的结构缺点是它们的表面波会在接地平面上传播。高阻抗表面 (HIS) 平面是最小化和消除表面波的突出解决方案。HIS 结构表现为有源 LC 滤波器,可抑制其谐振频率下的表面波。结构的谐振频率通过其 LC 等效或通过分析反射相位特性获得。这项工作提出了类似于蘑菇 HIS 和分形 HIS 的传统 HIS 结构,例如希尔伯特曲线和摩尔曲线 HIS。通过应用平面波照射的周期性边界条件,可以获得 HIS 反射相位特性。结果是根据反射相位角得出的。传统的蘑菇结构在给定的 10 mm × 10 mm 和 20 mm × 20 mm 尺寸下表现出窄带特性。这些结构有助于更换 6 GHz 以下贴片天线的 PEC 接地平面。还设计了希尔伯特和摩尔分形,它们具有多频带响应,可用于 L、S 和 C 波段应用。HIS 的另一个设计挑战是突起,这增加了设计的难度。这项工作还展示了有通孔和无通孔对反射相位特性的影响。响应显示,在 x 波段操作下,通孔的影响最小甚至没有显著影响。