在本文中,应将以下提到的隶属关系添加到作者 Jihene Malek 的现有隶属关系中。“苏塞大学应用科学与技术高等学院电子系,4003 苏塞,突尼斯”。原文已更正。
量子通信通道在随后的使用之间存在相关性的情况下,最近引起了很多关注。最初在经典信息传输的背景下研究了相关的量子渠道,这表明,对于某些相关强度的范围,随后的使用之间的纠缠产生是有益的,可以增强传播信息的量[1]。Interesting features then emerged in the study of quantum memory (or correlated) channels by modeling of rel- evant physical examples, including depolarizing channels [ 2 ], Pauli channels [ 3 – 5 ], dephasing channels [ 6 – 10 ], amplitude damping channels [ 11 ], Gaussian channels [ 12 ], lossy bosonic channels [ 13 , 14 ], spin chains [ 15 ], collision models [ 16 ], and a MicroMaser模型[17](有关具有内存效果的量子通道的最新综述,请参见参考文献[18])。Quantum channels can be characterized completely by means of quantum process tomography [ 19 ], a well- established technique that requires a number of measurement settings (in an entanglement-based scenario or otherwise a number of measurement settings times number of state prepa- rations in a single system scenario) that scales as d 4 , where d is the arbitrary finite dimension of the quantum system which is sent through the communication channel [ 20 – 22 ].最近提出了具有许多测量设置缩放为d 2的较便宜的程序,以检测不需要完整表征的量子通道的特定特性,例如,其纠缠破坏性属性[23]或其非马克维亚角色[24]。量化通道能力