癌症带来了沉重的负担,近年来其发病率持续上升。由于癌症本身的复杂性,治疗一直很困难。肿瘤微环境 (TME) 包括肿瘤细胞周围细胞和非细胞成分的复杂相互作用,对肿瘤的发生和发展有着密切的贡献。肿瘤的这一关键方面涉及癌症、基质细胞和炎症细胞之间的复杂相互作用,形成促进所有阶段肿瘤发生的炎症 TME。肿瘤坏死因子受体相关因子 6 (TRAF6) 参与调节与肿瘤发病机制相关的各种关键过程,包括但不限于调节肿瘤细胞增殖、侵袭、迁移和存活。此外,TRAF6 显著促进各种免疫和炎症途径。TRAF6 介导的免疫细胞中核因子 (NF)- κ B 的激活控制促炎细胞因子的产生。这些细胞因子通过激活肿瘤细胞中的 NF- κ B 来维持炎症并刺激肿瘤生长。在本综述中,我们讨论了各种类型的肿瘤,包括胃肠道癌症、泌尿生殖系统癌症、乳腺癌、肺癌、头颈部鳞状细胞癌、子宫肌瘤和神经胶质瘤。我们采用严格而系统的方法,全面评估 TRAF6 在各种癌症类型中的功能库和潜在作用,从而突出 TRAF6 是一个引人注目的新兴治疗靶点,值得进一步研究和开发。
碳纤维增强环氧树脂,408 CARLOS,395 铸铁,567 球墨铸铁,215 CFRP,408 分类规则,535 冷膨胀,171 复杂应力场,335 复合方法,521 压缩,278 压缩欠载,154 等幅,24 约束,232,278 角缺口,81 相关因子,567 试样,171 裂纹闭合,154,215,232,278,299,320,482 塑性诱导,453 裂纹前沿不相容性,299 裂纹萌生,186,492 裂纹扩展速率,482
肝细胞癌 (HCC) 是肝癌的主要形式,是全球第三大癌症相关死亡原因。肝脏执行广泛的任务,是代谢有害物质和外来化合物的主要器官。氧化应激在肝细胞癌 (HCC) 的生长和改善中起着至关重要的作用。核因子红细胞 2 (1) 相关因子 2 (Nrf2) 是一种调节位于细胞质中的转录的元素。它通过刺激依赖于抗氧化反应元件的许多基因的表达来控制氧化还原反应的平衡。Nrf2 在正常健康肝脏和 HCC 中具有相反的功能。在正常肝脏中,Nrf2 提供有利益处,而在 HCC 中,它会促进有害影响,支持 HCC 的生长和存活。在 HCC 中检测到了 Nrf2 的持续激活,并促进其发展和侵袭性。此外,Nrf2 的激活可能导致免疫逃避,削弱免疫细胞攻击肿瘤的能力,从而促进肿瘤发展。此外,HCC 中的化学耐药性被认为是对化疗药物的一种应激反应,它严重阻碍了 HCC 治疗的效果。应激管理通常通过激活特定的信号通路和化学变量来实现。核因子-E2 相关因子 2 (Nrf2) 是 HCC 化学耐药性产生的一个重要因素。Nrf2 是一种转录因子,可调节一组基因的激活和产生,这些基因编码负责保护细胞免受损伤的蛋白质。这是通过 Nrf2/ARE 通路实现的,这是一种对抗细胞内氧化应激的关键机制。
选择性雌激素受体降解剂 回文重复序列 SERM 选择性雌激素受体 CRL Cullin-RING 连接酶调节剂 CSN COP9 信号体 sgRNA 单向导 RNA DCAF DDB1 和 CUL4 相关因子 SMI 小分子抑制剂 DDB1 DNA 损伤结合蛋白 1 SOCS/BC 细胞因子信号抑制剂/DNMT 从头甲基转移酶 elongin-BC DUB 去泛素化酶 SR 底物受体 E1 泛素活化酶 STK 丝氨酸/苏氨酸激酶 E2 泛素结合酶 TPD 靶向蛋白降解 E3 泛素连接酶 UPS 泛素-蛋白酶体系统
肿瘤坏死因子 (TNF) 受体相关因子 (TRAF) 是一个在免疫信号传导中发挥关键作用的蛋白质家族 [1,2]。据报道,TRAF 与几个受体家族相关,例如 TNF 超家族、Toll 样受体 (TLR)、RIG-I 样受体 (RLR)、NOD 样受体 (NLR) 和细胞因子受体,以调节信号传导 [1]。支架泛素链的组装是这些途径的共同特征,TRAF 被广泛认为在调节它们的形成中发挥作用 [3,4]。鉴于 TRAF 在免疫信号传导中的重要性,TRAF 功能中断与疾病(包括癌症和炎症性疾病)的发展有关也就不足为奇了 [2,5,6]。例如,TRAF6 的过度表达与胃癌和胶质母细胞瘤患者的肿瘤形成和不良预后有关 [7,8],而
摘要背景:获得性耐药已成为卵巢癌治疗的重要问题。研究表明,卵巢癌普遍出现的化疗耐药(顺铂、紫杉醇等)部分原因是卵巢癌细胞线粒体活性氧生成减少。正文:核红细胞相关因子2(Nrf2)主要通过Keap1-Nrf2-ARE信号通路调控基因转录,通过对抗氧化应激、防御有害物质的侵害来保护细胞,这种保护作用体现在促进肿瘤细胞生长和对化疗药物的抵抗上。因此,抑制Nrf2通路可能逆转耐药性。本文在前期研究确定的Nrf2相关信号通路的基础上,综述了Nrf2在耐药中的作用。结论:进一步研究Nrf2的相关机制,有助于改善卵巢癌的治疗效果。关键词:Nrf2、耐药性、反应性氧化应激、卵巢癌
我们研究了相关的非马克维亚通道的域,探索了由于非马克维亚动力学而引起的固有记忆的相关作用引起的潜在记忆。使用不同的非马克维亚性指标和措施研究了通道相关性的影响。此外,还探索了相关的非马克维亚通道的动力学方面,包括纠缠动态以及可访问状态量的变化。对Unital和非青立相关通道进行了分析。还提出和探索了一个新的使用修改后的Ornstein-Uhlenbeck噪声构建的相关通道。此外,通过研究可访问状态量的变化的研究,讨论了相关非马克维亚通道的非马克维亚性的几何影响。相关因子与误差校正成功概率之间的链接被突出显示。
先前的报告表明,抗氧化剂的使用会增加各种原因的死亡。对于T2DM患者,服用抗氧化剂补充剂甚至可能会损害其疾病状况,因为外源性抗氧化剂进一步抑制了ROS信号。5作者得出的结论是,几十年来,自称为抗氧化剂可能会导致T2DM。,但是需要通过经验和临床研究来证实这一假设。因此,这项研究旨在评估抗氧化剂维生素(C和E)对胰腺中葡萄糖传感机制涉及的某些蛋白质的可能影响,包括;葡萄糖转运蛋白2(GLUT2),葡萄糖激酶,解偶联蛋白2(UCP2)和与核因子 - 金属核苷-2相关因子2(NRF2)。动物和方法:动物本研究是针对2个月大的70只雄性白化大鼠进行的,在实验开始时重100-120 g。大鼠是从医学研究所动物馆获得的。动物在12小时的光/黑暗循环中以23 o C的每个笼子容纳5个,并随意提供自来水。
氧化应激,已知会增加多种代谢和慢性异常或癌症发展的风险,被定义为活性氧(ROS)的产生与抗氧化剂抵消氧化剂有害作用的能力之间的不平衡。为了调节氧化/还原(氧化还原)平衡,存在许多抗氧化剂和非酶抗氧化剂。自由基激活转录因子以促进抗氧化剂的产生和线粒体生物发生。这些转移因子之一,核因子2相关因子2(NRF2)是抗氧化剂和抗炎反应的主要调节剂。的确,NRF2通过启动涉及抗氧化剂和细胞保护反应的数百个基因的转录来促进氧化还原平衡。更好地了解氧化应激的分子靶标及其与NRF2信号通路的相互作用将增强其预防性或治疗性在健康和疾病中的相关性。对于本期特刊,邀请研究人员提交原始文章或审查有关动物模型或人类氧化应激的不同方面的文章。主题包括着重于慢性疾病或预防NRF2信号通路的生物学和生理效应。
摘要肺癌的发生依赖于细胞内的半胱氨酸来克服氧化应激。包括非小细胞肺癌 (NSCLC) 在内的几种肿瘤类型通过过表达胱氨酸转运蛋白 SLC7A11 上调 xc - 胱氨酸/谷氨酸反向转运蛋白 (xCT) 系统,从而维持细胞内半胱氨酸水平以支持谷胱甘肽合成。核因子红细胞 2 相关因子 2 (NRF2) 通过调节 SLC7A11 充当氧化应激抵抗的主要调节器,而 Kelch 样 ECH 相关蛋白 (KEAP1) 充当氧化反应转录因子 NRF2 的细胞质抑制因子。KEAP1/NRF2 和 p53 的突变会诱导 NSCLC 中的 SLC7A11 激活。细胞外胱氨酸对于提供对抗氧化应激所需的细胞内半胱氨酸水平至关重要。胱氨酸可用性中断会导致铁依赖性脂质过氧化,从而导致一种称为铁死亡的细胞死亡。xCT 的药理抑制剂(SLC7A11 或 GPX4)会诱导 NSCLC 细胞和其他肿瘤类型的铁死亡。当胱氨酸摄取受损时,细胞内的半胱氨酸池可以通过转硫途径维持,该途径由胱硫醚-B-合酶 (CBS) 和胱硫醚 g-裂解酶 (CSE) 催化。外源性半胱氨酸/胱氨酸和转硫途径参与半胱氨酸池和下游代谢物会导致 CD8 + T 细胞功能受损和免疫疗法逃避,从而削弱免疫反应并可能降低免疫治疗干预的有效性。细胞焦亡是一种以前未被认识的受调节细胞死亡形式。在由 EGFR、ALK 或 KRAS 驱动的 NSCLC 中,选择性抑制剂可诱导细胞焦亡和凋亡。靶向治疗后,线粒体内在凋亡途径被激活,从而导致 caspase-3 的裂解和活化。因此,gasdermin E 被激活,从而导致细胞质膜通透化和细胞溶解性焦亡(以特征性细胞膜膨胀为标志)。本文还讨论了 KRAS G12C 等位基因特异性抑制剂的突破和潜在的耐药机制。关键词溶质载体家族 7 成员 11 (SLC7A11);核因子红细胞 2 相关因子 2 (NRF2);铁死亡;焦亡;KRAS G12C 等位基因特异性抑制剂;非小细胞肺癌 (NSCLC)