1 ENSTA B RETAGNE , UMR CNRS 6027, IRDL, F-29200 B REST , F RANCE 2 V IBRACOUSTIC – CAE D URABILITY P REDICTION D EPARTMENT , 44474 C ARQUEFOU , F RANCE 3 N ANTES U NIVERSITÉ , E COLE C ENTRALE N ANTES , CNRS, G E M, UMR 6183, F-44000 N ANTES , F rance摘要弹性材料的特性受到成分和详细过程所产生的夹杂物的强烈影响。提出了一种方法,以根据其化学性质区分弹性体中对疲劳有害(大于几µm)的夹杂物,并使用足够的统计数据进行定量表征它们。使用三种技术并进行了比较:数字光学显微镜(OM),与能量分散X射线光谱相关的扫描电子显微镜(SEM)和X射线微计算机层析成像(µ-CT)。六种材料用于挑战该方法。除了通常的金属氧化物和碳黑色附聚物外,突出显示了三种非典型夹杂物,从而产生了特定的检测困难。与经典的阈值方法相比,开发了一个相关的图像分析过程,以自动和准确地检测获得的图像的包含物。不同夹杂物种群的形态和空间分布。µ-CT是包含物的分类和统计表征的最全面,最准确的方法。此外,可以使用反向散射电子(SEM-BSE)或数字OM获得有关包含物尺寸分布的相关数据。SEM-BSE比数字OM提供了更准确的结果。简介橡胶部分的性能与化合物中成分的分散质量有关。该分散剂取决于所用的成分以及详细过程(混合,注射和固化)1。用于橡胶零件的典型成分包括碳黑色(CB)或二氧化硅填充剂和ZnO。对成分的良好分散对于获得均匀的混合物,良好的机械性能以及批处理和批处理之间的性质的一致性很重要。此外,夹杂物和团聚物在这些材料的机械性能中起关键作用。例如,疲劳损伤通常以CB的聚集体2或在二氧化硅聚集体3或金属氧化物2,4处引发。因此,重要的是能够表征填充物分散体和橡胶化合物中的夹杂物。的确,这种分散在空间和大小上的知识允许检查混合物的质量,优化过程参数,并在微观结构和感兴趣的属性之间建立链接。*通讯作者。matthieu.le_saux@ensta-bretagne.fr在文献中已经提出了许多技术,以分析橡胶材料中成分(基本上是CB)的微或宏分散因素:•通过透射光学显微镜(OM)5,6的材料(厚度上的几微米至几千微米)观察材料的材料(厚度几英尺)的效果。观察到的较暗和较明亮的区域分别对应于CB团聚物,并在切割过程中脱离了聚集体;该方法在1960年代被用作标准(ASTM D-2663方法B)。
摘要 - 网络威胁的快速发展已经超过了传统的检测方法,需要创新的措施,能够解决现代对手的适应性和复杂性。一个新颖的框架是构造的,利用时间相关图来建模恶意操作中固有的复杂关系和时间模式。该方法动态捕获的行为异常,提供了一种可靠的机制,可在实时场景中区分良性和恶意活动。广泛的实验证明了该框架在各种勒索软件家族中的有效性,其精度,召回和总体检测准确性始终如一。比较评估强调了其比传统的基于签名和启发式方法更好的表现,尤其是在处理多态性和以前看不见的勒索软件变体方面。该体系结构的设计考虑到可扩展性和模块化,确保与企业规模环境的兼容性,同时保持资源效率。对加密速度,异常模式和时间相关性的分析提供了对勒索软件运营策略的更深入的见解,从而验证了该框架对不断发展的威胁的适应性。该研究通过整合动态图分析和机器学习来推进网络安全技术,以在威胁检测中进行未来的创新。这项研究的结果强调了改变组织检测和减轻复杂网络攻击的方式的潜力。