摘要 相变材料 (PCM) 可通过时间偏移或降低峰值热负荷来提高能源系统的效率。PCM 的价值由其能量和功率密度(总可用存储容量和可访问速度)定义。这些受材料属性的影响,但不能仅凭这些属性来定义。在这里,我们通过开发热速率能力和 Ragone 图来展示能量和功率密度之间的密切联系,Ragone 图是一种广泛用于描述电化学存储系统(即电池)中能量和功率之间权衡的框架。我们的结果阐明了材料特性、几何形状和操作条件如何影响相变热存储的性能。这项研究为比较热存储材料和设备建立了一个清晰的框架,研究人员和设计人员可以使用它来通过存储来提高清洁能源的利用率。
𝑑 𝑥 2 −𝑦 2 和 𝑑 3𝑧 2 −𝑟 2 个轨道,其中 I oop = [ I 90 ˚− I 30 ˚•sin 2 30˚)/cos 2 30˚]。为了简化
摘要 通过恒电流间歇滴定技术在 3 至 4.2 V 电压范围内测定了 LiNi 1/3 Mn 1/3 Co 1/3 O 2 中的化学扩散系数。在充电和放电过程中,这些层状氧化物正极中的计算扩散系数分别在开路电压 3.8 V 和 3.7 V vs. Li/Li + 时达到最小。观察到的化学扩散系数的最小值表明在此电压范围内发生了相变。使用非原位晶体学分析确定了不同锂化状态下 LiNi 1/3 Mn 1/3 Co 1/3 O 2 正极的晶胞参数。结果表明,晶胞参数变化与 NMC 正极中化学扩散的观测值相关性很好;在同一电压范围内,绝对值有显著变化。我们将观察到的晶胞参数变化与镍转化为三价状态(具有 Jahn-Teller 活性)以及锂离子和空位的重新排列联系起来。
在本文中,我们比较了不同科学学科的成果,以展示它们之间的紧密交织,共同点是黄金分割率φ及其五次方φ 5 。研究领域涵盖与相变相关的统计物理模型计算、两个粒子的量子概率、信息相对论 (IRT) 提出的万物新物理学(包括对宇宙学相关性的解释)、ε-无穷大理论、超导性,以及球体表面 N 个不重叠圆的最大直径的 Tammes 问题及其与病毒形态和晶体学的联系。最后,简要描述了为拓扑量子计算 (TQC) 提出的斐波那契任意子,并与最近使用 Janičko 数列制定的逆斐波那契方法进行了比较。提出了一种适用于量子计算机的架构,由 13 级扭曲微管组成,类似于生物物质的微管蛋白微管。大多数话题都表明,中庸之道无处不在,是世界数字的主导。
多体量子系统的淬火动力学可能在洛奇米特回波中表现出非分析性,这是一种被称为动力学相变(DPT)的现象。尽管对这种现象背后的基本机制进行了大量研究,但仍然存在一些开放问题。以此为动机,我们从量子相空间和熵产生的角度进行了详细研究,这是热力学的关键概念。我们专注于Lipkin-Meshkov-Glick模型,并使用自旋连接态构建相应的Husimi-Q准稳定性分布。Q函数的熵(称为WEHRL熵)提供了系统的粗粒动力学的量度,因此,即使对于封闭的系统,也会在非定程化上演变。我们表明,临界淬灭会导致WEHRL熵的准生长,并结合小振荡。前者反映了这些过渡的信息争夺特征,并用作熵产生的量度。另一方面,较小的振荡意味着负熵产生速率,因此发出了Loschmidt Echo复发的信号。最后,我们还基于修改的荷斯坦 - 普罗里马科夫近似值研究了模型的高斯。这使我们能够确定低能部门对DPT出现的相对贡献。本文中介绍的结果不仅是从动态量子相变的角度来看的,而且与量子热力学领域有关,因为它们指出WEHRL熵可以用作可行的熵产生量度。
图。3:2d XRD数据投影到2θ -ϕ(方位角角)空间被1D方位角集成的数据叠加。使用1S集成时间获取数据。(a)和(d):静态压缩后的样品的结构和纹理,在300 K.(b)和(e)时:分别在HP加热后最高为1360 K和1360 K和1450 K时发生的结构和纹理变化。(c)和(f):动态加载后样品的结构,然后淬火至300 K;在这两种情况下,最终的铁结构都对应于ϵ相。
摘要:基于流的架构最近被证明是用于在晶格上正规的有效字符串理论的数值模拟的有效工具,否则无法通过标准的Monte Carlo方法进行有效采样。在这项工作中,我们使用随机化流动,这是一种基于非平衡蒙特卡洛模拟的最先进的深度学习结构,以研究不同的有效弦模型。通过与Nambu-Goto模型的精确结果进行比较测试了这种方法的可靠性后,我们讨论了可观察到的结果,这些结果在分析方面具有挑战性,例如字符串的宽度和通量密度的形状。此外,我们对有效的弦乐理论进行了一项新的数值研究,其术语超出了Nambu-Got的作用,其中包括对它们对晶格量规理论的重要性的更广泛讨论。这些发现的组合可以定量描述不同晶格理论中限制机制的细节。这项工作中介绍的结果建立了基于流程的采样器对有效字符串理论的可靠性和可行性,并为更复杂模型的未来应用铺平了道路。
大型垂直压电性,5–7可调节带隙,8,9和大型Dzyaloshinskii – Moriya互动(DMI)。10,11因此,近年来,2d Janus材料在纳米科学和纳米技术方面受到了广泛关注。迄今为止,已经在实验中发现了几种磁性janus材料或从理论上预测。例如,他等人。预测,基于CR的Janus Mxene Monolayers CR 2 CXX 0(x,x,x 0 = h,f,cl,br,oh)的NE´EL温度最高为400K。12同样,Akgenc等人。预测基于CR的Janus MXENE的单层CRSCC中的居里温度为1120 K,这表明对未来的Spintronic应用提出了承诺的候选者。13 Jiao等。 提出了新的2d Janus Cr 2 O 2 Xy(X = Cl,Y = Br/I)单层,并研究了使用菌株从铁磁到抗铁磁状态的相过渡,提出Cr 2 O 2 XY作为旋转型应用的潜在材料。 14此外,Zhang等人。 预测具有较大山谷极化的高度稳定的室温磁磁性janus vsse单层,在Valleytronics V(S,SE)2中具有潜在的应用。 15研究13 Jiao等。提出了新的2d Janus Cr 2 O 2 Xy(X = Cl,Y = Br/I)单层,并研究了使用菌株从铁磁到抗铁磁状态的相过渡,提出Cr 2 O 2 XY作为旋转型应用的潜在材料。14此外,Zhang等人。 预测具有较大山谷极化的高度稳定的室温磁磁性janus vsse单层,在Valleytronics V(S,SE)2中具有潜在的应用。 15研究14此外,Zhang等人。预测具有较大山谷极化的高度稳定的室温磁磁性janus vsse单层,在Valleytronics V(S,SE)2中具有潜在的应用。15研究
其中 P m 和 P r 分别为最大和剩余极化。虽然传统电容器的电压在放电时线性下降,但表现出极化跳跃的强非线性电容器可以保持其电压。这一特性可以简化从电容器提供恒定电压所需的电子设备。此外,反铁电体可以比线性电介质和铁电体更有效地以高密度存储能量。含铅反铁电体的性能尤其高,12-14 例如 (Pb,La)(Zr,Ti)O 3 (PLZT) 化合物,它已在直流链路电容器中得到商业应用。此外,广泛的研究已使无铅替代品的电存储性能得到显着改善。15-18 通过将这些反铁电体改性为弛豫剂,还可以实现超高能量存储。19-22
非常规的铁电性型植物结构氧化物由于其出色的可伸缩性和硅兼容性而在纳米电子学上带来了巨大的机会。然而,由于可视化纳米晶体中的氧离子的挑战,它们的极化顺序和开关过程仍然难以捉摸。在这项工作中,极化开关和相关的极性 - 尖端相变中的氧转移在独立式ZRO 2薄膜中直接捕获在多个可稳态的相之间,而低剂量综合差异差异差相对比扫描传输电子(IDPC-STEM)。在抗fiferroeleelectric和铁电顺序与界面极化弛豫之间的双向转变在单位细胞尺度上进行了澄清。 同时,极化切换与单斜骨和正骨相之间的可逆Martensenitic转化以及两步的四面体到四面体到正常相变的ZR – O位移密切相关。 这些发现提供了对亚稳态多晶型物之间的过渡途径的原子见解,并揭示了(抗)铁电氟氧化物中极化顺序的演变。在抗fiferroeleelectric和铁电顺序与界面极化弛豫之间的双向转变在单位细胞尺度上进行了澄清。同时,极化切换与单斜骨和正骨相之间的可逆Martensenitic转化以及两步的四面体到四面体到正常相变的ZR – O位移密切相关。这些发现提供了对亚稳态多晶型物之间的过渡途径的原子见解,并揭示了(抗)铁电氟氧化物中极化顺序的演变。