从一阶转变的临界终点出现的关键现象本质上是无处不在的。在这里,我们将最初在流体背景下开发的超临界跨界的概念带入了量子染色体动力学(QCD)所描述的相互作用问题。我们表明,在温度与QCD相图的温度与化学势中,强子气体和夸克 - 胶子等离子体之间的假定临界终点存在意味着在超临界区域中存在从中出现的宽线线。我们调查了在QCD的简化理论模型中已经鉴定出的热力学异常,该模型表现出临界点,以表明它们可以用widom线来解释。然后,我们建议可能的方向,其中Widom线概念可以在QCD相图上提供新的光。
的过程,包括涂料和纤维旋转。确定溶剂在聚合物设计中的作用导致了许多问题:什么是好的溶剂?哪些溶剂可以溶解特定的聚合物?溶剂的作用如何影响液化相变的固化聚合物的宏观行为?过去,使用众所周知的热力学方程和参数的半经验技术有助于回答这些问题(例如,Flory - Huggins W参数)。1,2尽管我们已经了解了很多有关聚合物相分离的物理现象,但对于许多不同的聚生物化学物质来说,从第一原理中对聚合物溶解度的定量预测仍然未被发现。此外,溶解度的作用与一个受试者,实验或应用与另一个受试者不同。例如,是否确定聚合物 - 溶剂对在设计过程中是否足够兼容,还是需要知道整个相图?因此,可以解决这些问题的每一个,同时推广到各种方法和应用的预测工具可以帮助加速,精确地控制新型聚合物化学的合成和设计。聚合物溶解度的最重要影响之一是在聚合物加工中:在溶液涂料,纤维旋转和3D打印等过程中,首先将聚合物溶解在溶剂中,并蒸发或提取该溶剂以固化聚合物。3这些方法已在诸如粘合剂,疏水涂层和柔性电子产品等技术中找到。)。具体而言,薄膜加工技术(例如旋涂,叶片涂层和插槽涂层)通常与聚合物和溶剂混合物一起施用,然后是温度诱导或非溶剂诱导的相分离,每种相位都可以控制所得的形态或膜结构。4–6然而,溶液中聚合物行为的复杂性引起了预测先验从处理条件中产生的材料性能的挑战(例如,,溶剂蒸发率,浓度,温度,压力等。例如,研究表明,在铸造之前,聚合物的溶剂质量和不完全溶解可能会影响聚合行为7和
自然界中发现的大部分复杂性和多样性都是由非线性现象驱动的,这对于非线性动力学与大脑之间的关系也是如此。计算机模拟表明,包括大脑在内的许多生物系统都表现出近乎混乱的行为。非线性动力学理论已成功地从生物物理学的角度解释了大脑功能,统计物理学领域在理解大脑连接和功能方面继续取得实质性进展。本研究使用生物物理非线性动力学方法深入研究复杂的大脑功能连接。我们的目标是发现高维和非线性神经信号中隐藏的信息,希望提供一种有用的工具来分析功能复杂网络中的信息转换。通过利用相图和模糊递归图,我们研究了复杂大脑网络功能连接中的潜在信息。我们的数值实验包括合成线性动力学神经时间序列、物理上真实的非线性动力学模型和生物物理上真实的神经质量模型,结果表明,相图和模糊递归图对神经动力学的变化高度敏感,并且它们还可用于根据结构连接预测功能连接。此外,结果表明,神经元活动的相轨迹编码低维动力学,相图形成的极限环吸引子的几何特性可用于解释神经动力学。此外,我们的结果表明,相图和模糊递归图可以使用真实的 fMRI 数据捕捉大脑中的功能连接,并且这两个指标都能够捕捉和解释特定认知任务期间的非线性动力学行为。总之,我们的研究结果表明,相图和模糊递归图可以作为非常有效的功能连接描述符,为大脑中的非线性动力学提供有价值的见解。
是由最近发现的高t c双层镍超导体LA 3 ni 2 O 7的动机,我们通过使用Lanczos方法对不同的电子密度n进行了全面研究BiLayer 2×2×2群集。我们还采用随机相近似来量化第一个磁不稳定性,而哈伯德耦合强度的提高也有所不同。基于自旋结构因子s(q),我们在固定的hund耦合下定义的平面中获得了丰富的磁相图,其中u是Hubbard的强度和W带宽。我们观察到许多状态,例如A-AFM,条纹,G-AFM和C-AFM。在半填充,n = 2(每个Ni位点,对应于n = 16个电子)时,规范的近方交互作用导致具有抗firomagnetic Couplings的稳健的G-AFM状态(π,π,π,π),均带有内在的层和层之间。通过增加或降低电子密度,从“半空”和“半满”机制中出现铁磁趋势,从而导致许多其他有趣的磁趋势。另外,与半完成相比,在孔或电子掺杂区域中,自旋旋转相关性在较弱。n = 1。5(或n = 12),密度对应于La 3 Ni 2 O 7,我们获得了“条纹2”基态(抗铁磁耦合在一个平面方向上,另一个面积为非磁磁耦合,另一个耦合的铁磁耦合,沿Z AxiS沿2×2×2×2 Cluster沿Z AxiS沿Z Axiis沿Z AxiS)。另外,我们获得了沿Z轴的AFM耦合要比XY平面中的磁耦合要强得多。此外,具有q /π=(0。< /div>的状态6,0。随机相近似的计算具有不同的n的结果,即使这两种技术都是基于完全不同的程序,但n的结果与兰斯佐斯的结果非常相似。6,1)在我们的RPA计算中发现了靠近电子期波形,通过将填充略微降低到n = 1,可以找到。25,可能负责在实验中观察到的电子期SDW。我们的预测可以通过化学掺杂LA 3 Ni 2 O 7来测试。
− − 是一个基于 Landau-Ginzburg-Devonshire (LGD) 理论计算铁电单晶和薄膜热力学单畴平衡态及其特性的程序。利用 SymPy 库的符号操作,可以求解控制方程以及适当的边界条件,从而快速最小化晶体的自由能。利用流行的差分进化算法,通过适当的混合,可以轻松生成多个相图,例如块体单晶的压力-温度相图和单畴薄膜系统的常见应变-温度相图。此外,可以同时计算稳定铁电相的多种材料特性,包括介电、压电和电热特性。对薄膜和单晶系统进行了验证研究,以测试开源程序的有效性和能力。
绝大多数非常规超导体都具有简单的单组分相图。这是令人惊讶的,因为 3 He 中的超流动性质( 1 )以及可以预期简并或近简并现象将由许多非常规超导电子机制产生的事实( 2 )表明,许多材料应该具有温度 - 磁场相图,并且在超导状态下不同超导序参量之间会发生转变。然而,到目前为止,唯一已证实在环境压力下具有此类相图的化学计量超导体是 UPt 3 ( 3 – 5 )。本文,我们报告在重费米子材料 CeRh 2 As 2 中发现了此类相图。实验表明,尽管 CeRh 2 As 2 的超导转变温度 T c 仅为 0.26 K,但它具有高达 14 T 的极高超导临界场。此外,当沿晶体 c 轴施加磁场时,超导状态在 ~4 T 处包含一个明确的内部相变,我们使用几个热力学探针对其进行了识别。我们还认为,这些观察结果来自与 UPt 3 不同的物理原理;CeRh 2 As 2 的关键超导特性可能是局部反演对称性破坏的表现,以及随之而来的 Rashba
1 Department of Petroleum and Gas Engineering, Federal University Otuoke, Federal University Otuoke, Bayelsa State, Nigeria *Corresponding Author: Engr (Dr) Ekeinde Evelyn Bose Department of Petroleum and Gas Engineering, Federal University Otuoke, Federal University Otuoke, Bayelsa State, Nigeria Article History Received: 24.11.2024 Accepted: 30.12.2024 Published: 02.01.2025摘要:通过岩石钻探的钻孔的特定不稳定,例如钻孔突破,钻孔塌陷和页岩肿胀,由于其对钻孔安全性和效率的不利影响,在钻井操作中是一个重大关注的问题。尽管对钻孔不稳定性进行了大量研究,但找到解决此问题的解决方案仍然难以捉摸。这篇综述的目的是从一般的身体不稳定原则的角度检查岩石中不稳定性的主要机制。分析特定不稳定性问题的关键标准是构建综合相图。在这种情况下,讨论了三种主要方法及其部分实施。第一种方法涉及在钻孔已经塌陷并旨在确定洞穴壁的最终位置的假设下构建相图。但是,这种方法提出了一些挑战。洞穴可能会导致严重的开球或打破问题,在洞穴过程中的不稳定以及同时建模流体样的多孔材料中的洞穴并发症,并通过井眼的敞开壁过滤旁边的流量过滤。第三种方法涉及分析相图以研究合规性触摸模式的结果。第二种方法需要开发相图,这些相图表征了被驱动的钻孔壁的机械和液压不稳定性。这些相图是特定的不稳定性标准,但是由于它们通常是非Quasi静态的,因此在跨各种故障机制上概括了困难,并且在发生故障后被忽略并实施了传播禁令。但是,这些相图和最终边界条件的崩溃通常会忽略主要的耗竭和原位阻抗,它们是至关重要的系统特定物理补充,可以增强经典的平衡方程模式。因此,这些因素的整合对于对井眼不稳定性的更全面理解至关重要。关键字:定向钻孔;具体的不稳定性;井眼突破;钻孔崩溃;页岩肿胀;页岩床上用品;岩性;原位应力;钻孔液;加强井眼。w troduction to w ellbore i nstability
材料选择:为特定的工程应用选择材料 相图分析:解释材料行为的相图。 微观结构分析:用显微镜检查金属微观结构。 热处理效果:研究热处理对钢的影响。 材料性能测试:比较各种金属的机械性能。 疲劳测试:测试金属的疲劳耐久性。 绿色材料:制造业使用的绿色材料研究报告 智能材料:研究和展示智能材料。
摘要:增加了从例如光伏和风能中存储间歇性可再生电力的需求,导致大量的大规模固定能量存储中的大量研发,例如,斑马电池(Na-Nicl 2固体电解质电池)。用丰富和低成本的Zn代替Ni,使斑马电池更具成本效益。然而,很少对此下一代斑马(Na-Zncl 2)电池系统进行研究,尤其是在其ALCL 3 -NACL-ZNCL 2二级电解质上。其特性(例如相图和蒸气压力)对于细胞设计和优化至关重要。在我们以前的工作中,一种用于熔融盐电解质选择的模拟辅助方法显示了其在熔融盐电池开发中的成功应用。此处使用相同的方法来研究ALCL 3 -NACL-ZNCL 2盐电解质的相图和通过事实TM和热分析技术(差速器扫描量热法(DSC)和最佳电池效果及其对电池性能的影响和放电机制的影响,其相位图和蒸气压力(差分扫描量热法(DSC)和效果。DSC和Optimelt结果表明,诸如熔化温度和相变的实验数据与模拟相图非常吻合。此外,事实TM模拟表明,随着ALCL 3的温度和摩尔分数的升高,盐蒸气压力显着增加。获得的相图和蒸气压将用于辅助电解质选择,电池设计和电池操作。
统计物理学在多体问题中以微观量表的粒子本身的动力学与宏观集体行为之间提供了联系。这样做,对系统属性的分析是感兴趣的。这些属性可以被概念化为密度,因为它们与自由能W.R.T.的第一个衍生物相对应。相关领域或作为敏感性,与相关自由能的第二个衍生物相对应,这通常是在没有领域的情况下实现的。通常,这些功能是平稳的,但是在突然变化的情况下,系统内有相变[1]。本报告将通过首先分析水的相图,然后再分析简单的铁磁铁的相位图来解释相变的模糊表述,以了解相变的原理。随后,提供了相变的定义,而磁系统的相图则强调了Ehrenfest和Landau的分类。ehrenfest特别使用了自由能衍生物的不连续性的描述作为相变的定义,而Landau则描述了通过对称断裂的相变,从而允许订单参数的概念。专注于磁系统的ISING模型,相图说明了区分一阶和二阶转换的相变。此报告