虽然对不兼容的POVM的定义达成了一般共识,但提升到仪器的水平,人们发现的情况较不清楚,并且在数学上具有不同的和逻辑上独立的无效定义。在这里,我们通过引入Q兼容性的概念来缩小这一差距,Q兼容性的概念将POVM,渠道和工具的不同概念统一到了分离各方之间的交流资源理论的一个层次结构。我们获得的资源理论是完整的,从某种意义上说,它们包含完整的自由操作和单调的家庭,为存在转换提供了必要和足够的条件。此外,我们的框架是完全运行的,从某种意义上说,自由转换是在因果关系有因果关系的定向经典交流的帮助方面明确特征的,并且所有单调的所有单调都具有游戏理论的解释,从而使它们在原则上可以进行实验性测量。因此,从信息理论资源角度来看,我们能够准确地指定每个不相容性的概念所组成的。
关系量子力学(RQM)声称是量子理论的一种解释[参见Rovelli(2022),该理论出现在《量子物理学解释史》中。但是,与量子理论显着不同:(i)在rqm中的结果中产生的相互作用是由纠缠了一个没有脱干的系统和观察者A的相互作用,并且(ii)这样的结果是相对于ob-服务器A的“事实”,但与其他观察者相对于其他观察者的互动而不是在与其他观察者相互作用的事实,而不是在与S互动的过程。对于b,系统s⊗纠结了。我们得出了类似GHz的矛盾,表明这些陈述所描述的相对事实与量子理论无关。,根据我们引入的相互作用的标准,不应将相对的量子力学视为量子理论的解释。标准指出,每当提出涉及结果的概念时,这些结果,无论它们是什么,都必须遵循诞生规则规定的概率分布。
基于这些特性,金属和金属合金被用作承重植入物。其中,钴铬合金、不锈钢、钛和钛合金被广泛用于多种生物医学应用。特别是,钛及其合金的弹性模量接近骨骼,密度低于钴铬合金和不锈钢。[2,3] 此外,与纯钛相比,钛合金具有更高的机械性能,使其特别适合用作骨科和创伤植入物。然而,钛和钛合金被认为是生物惰性材料,即它们不会与人体周围组织发生化学或生物反应。[4] 此外,涉及钛合金(即 Ti6Al4V 合金)的腐蚀现象会导致释放对人体有害的 Al 和 V 合金。为了促进植入物与现有人体骨组织的骨整合,从而优化装置的整合,在植入物表面生长涂层可能是一种合适的方法。尤其对于钛和钛合金,火花阳极氧化是一种合适的技术,可在基体上生长出牢固粘附的多孔陶瓷涂层,最大限度地减少可能导致骨溶解的剥落现象。在此背景下,已研究了多种策略来增强钛合金的生物活性,从而增强其骨整合。[5–7] 文献中有充分的证据表明,羟基磷灰石 (HA,Ca 10 (PO 4 ) 6 (OH) 2 ) 的存在可以增强外来生物材料的骨整合,因为它与硬组织和软组织具有很高的生物相容性。[8] 因此,诱导 HA 的结合或生长已被证明是提高材料生物活性的一种好策略。例如,这可以通过电化学转化涂层工艺(如火花阳极氧化)通过精确调整操作条件(形成电压、电解质浴成分等)来实现。 [3,9,10] 此外,Ti6Al4V 合金表面生长一层厚的阳极氧化层可以提高其耐腐蚀性能
当前针对ABOI移植的当前OPTN政策于2016年实施,并反映了当时公认的临床实践和科学理解,尤其是关于候选年龄的限制。2从那时起,加拿大和英国的研究和临床实践表明,在对两岁以上的儿科候选人进行时,ABOI心脏和心肺移植可以取得成功的结果。3因此,OPTN心脏移植委员会(以下称为“委员会”)制定了一项政策提案,旨在通过消除现有的ABOI心脏政策(附录A)的两岁年龄级别,以进一步增加儿科候选者的捐赠机构的机会。该提案于2023年1月19日提交了公众意见,并获得了大量社区支持(附录B)。
在这项研究中,研究了低能(1 keV)AR +离子束照射对多晶Ti磁盘形态的影响。通过切割和机械抛光商业棒来制备目标。通过扫描电子显微镜(SEM)和机械辅助学来表征辐照前后的表面地形。使用各种入射角(αI)以10 18离子/cm 2的总剂量从正常到放牧的几何形状进行辐射。对辐照的Ti靶标的SEM分析揭示了明显的纹理,其表面形态具有各种可实现的表面形态,具体取决于αI。表面特征从具有指纹样图案(0≤αi≤60°)的斑块中的波纹变化到平行于离子束方向的定向结构,例如柱/尖端结构(65≤αi≤75°)和浅层波纹(αi至80°)。这种形态的选择性可以归因于竞争性扩散和侵蚀性方案,在这种情况下,形态的横向均匀性受到晶体晶粒尺寸有限的影响。最后,评估了特征性地形的润湿性和生物兼容性,与未经处理的表面相比,结果表明离子束纹理表面的性能提高了。
在“联合公民诉联邦选举委员会”案中,最高法院授予公司与人类基本相同的政治言论权。但是,人工智能(“AI”)在指导政治传播内容和传播方面的日益普及是否会对这种承诺的法理合理性提出质疑?如果人工智能实体可以在没有任何人类监督的情况下完全拥有和运营商业实体,那么继续将公司解释为宪法权利的承担者是否有意义?这些问题似乎尤为重要,因为在人工智能的新时代,现代公司的性质和实践正在迅速演变。这种演变的规模无疑将影响我们共同的社会、经济和政治生活中一些最重要的方面。在人工智能时代,我们对公司的概念发生了根本性变化的程度,评估先前关于公司权利的法理承诺的持久合理性似乎至关重要,因为这些承诺似乎不再与维护我们的民主价值观相兼容。人工智能时代企业实践的急剧演变,为我们重新审视赋予企业完全宪法人格和强大政治言论权的法理敏感性提供了号召。因为如果企业可以利用人工智能数据挖掘和预测分析来操纵政治偏好和选举结果以获取更多利润,那么我们民主进程的基本可行性和合法性就悬而未决。此外,如果人工智能技术本身在确定企业政治传播内容方面发挥着越来越重要的作用,即使不是控制性作用,那么赋予企业与人类相同的政治言论权实际上就是将政治领域拱手让给了算法实体。最后,尽管人工智能可以帮助企业采取更人性化的行为,但企业受到非人类实体严重影响或控制这一概念本身就需要至少在一定程度上限制对企业作为完全宪法权利持有者的承诺。特别是,在企业政治活动方面,人工智能在管理(可能还有所有权)方面的日益普及
这是以下研究文章的同行评审,被接受的作者手稿:O'Connor,S.,Dennany,L。,&O'Reilly,E。(2023)。纳米材料电化学发光透明度的进化向生物相容性材料。生物电化学,149,[108286]。https://doi.org/10.1016/j.bioelechem.2022.108286
摘要:压电效应在生物系统中被广泛观察到,其在生物医学领域的应用也正在兴起。可穿戴和可植入生物医学设备的最新进展为压电材料构件带来了希望,也提出了要求。由于其生物相容性、生物安全性和环境可持续性,天然压电生物材料被认为是这一新兴领域的有前途的候选材料,有可能取代传统的压电陶瓷和合成聚合物。在此,我们全面回顾了五种主要类型的压电生物材料(包括氨基酸、肽、蛋白质、病毒和多糖)的最新研究进展。我们的讨论重点是它们与结构和相相关的压电性能以及实现所需压电相的制造策略。我们比较和分析了它们的压电性能,并进一步介绍和评论了改善其压电性能的方法。我们还讨论了这组功能生物材料的代表性生物医学应用,包括能量收集、传感和组织工程。我们设想,从分子水平上理解压电效应、压电响应改进和大规模制造是这一有前途的跨学科领域的三大挑战,也是研发机会。关键词:压电、天然生物材料、可持续材料、生物医学设备、纳米发电机、灵活性、氨基酸、蛋白质、多糖
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 8 月 10 日发布。;https://doi.org/10.1101/2022.08.09.503242 doi:bioRxiv preprint