及早发现患者生物信号中的恶性模式可以挽救数百万人的生命。尽管基于人工智能的技术在稳步改进,但这些方法的实际临床应用大多局限于对患者数据的离线评估。先前的研究已将有机电化学器件确定为生物信号监测的理想候选。然而,它们在实时模式识别中的应用从未得到证实。在这里,我们制作并表征了由有机电化学晶体管组成的受大脑启发的网络,并使用储层计算方法将它们用于时间序列预测和分类任务。为了展示它们在生物流体监测和生物信号分析中的潜在用途,我们对四类心律失常心跳进行了分类,准确率为 88%。这项研究的结果为生物相容性计算平台引入了一种以前未探索过的范例,并可能有助于开发能够与体液和生物组织相互作用的超低功耗硬件人工神经网络。
摘要:eumelanins是通过其自然前体的氧化聚合获得的天然和合成色素的家族:5,6-二羟基吲哚和其2-羧基衍生物(DHICA)。同时存在离子和电子电荷载体,使这些颜料有望在生物电子中应用。在这项计算研究中,考虑到其许多自由度之间的相互作用,我们构建了Dhica黑色素的结构模型,然后我们检查了代表性低聚物的电子结构。我们发现,沿聚合物链的非呈偶极子将该系统与常规聚合物半导体区分开来,确定其电子结构,对氧化和电荷载体的定位。我们的作品阐明了Dhica黑色素以前未被注意到的特征,不仅与它的根本清除和光保护特性相吻合,而且还开辟了对这类材料中理解和调谐电荷传输的开放新观点。
生物相容性材料是体内保存的天然或人造物质,用于将活细胞转变为功能器官。骨组织和生物相容性正成为再生骨的替代方法,因为它比自体移植和同种异体移植具有一些明显的优势。本研究旨在制造一种可用作骨替代品的新型多孔支架 Ti-Nb-Zr-Sn 合金。选择不同重量比的 Ti-Nb-Sn-Zr,并使用粉末冶金法合成。加入锆 (Zr) 以增强生物性能。Ti、Nb 与 Zr 和 Sn 元素因其与人体具有出色的生物相容性而被利用。通过增加Zr和Nb的重量比,Ti-35Nb-7Zr-4Sn合金具有1042至1603 MPa之间的高抗拉强度。此外,35%Nb/7%Zr与4%Sn复合材料表现出更高的硬度,这有利于在汽车应用中模拟骨组织和压铸配件。进行疲劳和磨损分析有助于我们了解Ti-Nb-Zr-Sn合金的行为。关键词:铌合金;生物相容性;力学性能;形态特征;骨科应用
图2。PSM-CO -OMAM(共co-)聚合物的结构和表征。(a)聚合物结构显示醛平衡及其乙酰形式。(b)1 H NMR(700 MHz,d 2 O)纯化的PSM- CO-OMAM共聚物(S25 – S75)和峰分配的聚(3-磺胺甲基丙烯酸酯)均聚合物(S100)的光谱。请注意,游离醛状态(a,b,c)及其相关的乙酰形式(a*,b*,c*)的存在。在图S14中,将S25频谱作为代表性示例包括在表示a:b:c的积分比为≈1:1:1:a+a*:b+b*:c+c*是≈1:2:2。(c)纯化的S25 – S100的ATR-FTIR光谱。酰胺I和醛羧基拉伸(1637 cm -1),酰胺II带(1537 cm -1),磺酸盐(1041 cm -1)和酯(1714 cm -1)峰用点缀的线表示。S100光谱中带有星号(*)的峰与指定的酰胺I和醛峰(1648 cm -1 vs 1637 cm -1)不一致。完整的ATR-FTIR光谱可以在图S15中找到。
抽象支架被用作人体中的临时组织,以加快愈合的速度。生物相容性材料在组织工程领域起着至关重要的作用。因此,它们可用于尽快减轻人类疼痛。聚合物材料被广泛用于复制骨组织。poly(乳酸 - 乙醇酸)(PLGA)是骨组织支架的潜在材料,因为其具有出色的特性,包括与人体的兼容性。因此,添加羟基磷灰石和引入不同的制造方法可以使PLGA支架具有良好能力,以帮助细胞生长,扩展,区分和增殖。本文回顾了生物相容性材料PLGA作为骨组织支架的当前发展。它专注于PLGA的应用,属性,改进和可持续性。关键词:生物相容性材料,骨组织工程,聚(乳酸 - 乙醇酸)(PLGA),支架植入物引入生物相容性材料在医疗目的中的应用,尤其是在改善人类健康方面,已经积极开发。生物相容性材料必须具有可生物降解,强,化学稳定,无毒,无肺化和非自源性[1,2,3]。此外,它们必须可再生,环保和生物活性。骨科植入物代表人体中生物相容性材料的一种应用。生物兼容的材料不仅可以解决外体应用(假体)中遇到的问题,还可以解决内部体内恢复(植入物)(例如骨植入物再生)中遇到的问题[4]。骨骼是人体中的多功能器官,它们和骨骼提供体重的支撑并启用运动。它们主要由细胞和支架组成[5,6]。此外,骨骼具有多种生物学作用,例如保护重要器官和形成红细胞和生长因子。骨组织断裂或损害会限制流动性并导致残疾[6]。
目的:评估相关的材料特性(弯曲强度[σF],弹性模型[E],吸水[WSP]和溶解度[WSL]和生物相容性(AM)聚合物(AM)聚合物与热量丙烯酸(AR; Contrance)进行完整材料的材料的临时性作用,该材料的生产均可在制造临时,该材料的临时性是由此进行了临时。材料和方法:根据ISO 20795-1:2013标准评估σF,E,WSP和WSL,并使用MTT和SRB分析评估了生物相容性。磁盘形样品被制造并用于WSP(n = 5),WSL(n = 5)和生物相容性(n = 3)测试。用于评估σF和E的条形样品(n = 30),并在37°C蒸馏水中储存48小时或6个月,然后在通用测试机中弯曲频率(5±1 mm/分钟)。使用学生t检验(α= .05)对σF,E,WSP,WSL和生物相容性测试进行了统计分析。Weibull分析也用于σF和E数据。结果:发现了两种材料之间的显着差异。储能持续6个月不会影响AM聚合物的弯曲强度,但是该材料显示出不足的σF和WSL值。结论:尽管储水6个月后,尽管有足够的生物相容性和强度稳定性,但建议用于完整牙齿的AM聚合物需要进一步开发,以改善本研究中评估的材料特性。Int J ProShodont 2024; 37(Suppl):S109 – S117。做:10.11607/ijp.8295
近年来,通过氢键、疏水作用、π-π作用及静电作用等构建了亲水聚合物水凝胶,由于其良好的弹性、生物黏附和生物相容性等特性,在生物和医学领域得到了广泛的应用。杨建军研究组设计了一种具有靶向功能的紫杉醇水凝胶,将叶酸作为靶向基团引入凝胶体系,通过均匀的纳米球交织构成三维网络,得到小分子水凝胶,该水凝胶中紫杉醇的载药量可达49.4%,高于许多药物递送系统的包封量。徐建军研究组利用过表达酯酶的宫颈癌细胞,合成了受酯酶影响的多肽分子。这些分子可以进入细胞并自组装成纳米纤维,然后纳米纤维相互缠绕形成水凝胶,导致宫颈癌细胞死亡。8然而,以两亲性小分子为代表的这些水凝胶不可避免地需要较高的温度才能形成凝胶,这限制了它们作为大分子药物(蛋白质、基因等)的载体的应用。环糊精(CD)是一种大环化合物,具有良好的水溶性和生物相容性,因此,它因与有机和生物基质的特定结合而备受关注。由CD构建的超分子水凝胶已广泛应用于环境响应
近年来,能够引导细胞行为和形态的聚合物涂层引起了越来越多的关注。已知涂层特性(包括表面形态、表面结构和化学性质)会显著影响细胞粘附、定向、引导、分化、增殖和基因表达。[1–4] 此类涂层在生物传感器、生物芯片、药物输送装置、假体和植入物中也得到了有效应用。可以使用多种合成和天然来源的生物相容性聚合物。尽管合成聚合物在加工、稳定性和机械性能方面具有优势,但天然聚合物由于其生物活性、生物降解性和生物相容性而在许多应用中更受青睐。 [5– 6 ] 在天然聚合物中,壳聚糖是一种从几丁质中提取的线性多糖,由于其无毒、[7]可生物降解、[8]抗菌活性、[9]生物相容性[10]和免疫活性[11]等显著特性,已广泛应用于生物医学、环境和食品应用。此外,由于壳聚糖的可加工性,它可以设计成各种结构,包括薄膜、[12]膜、[13]微/纳米纤维、[14]绷带、[15]微/纳米颗粒[16]和水凝胶。[17]