摘要:已经开发了一种高分辨率传输电子显微镜(HR-TEM)和高分辨率扫描传输电子显微镜(HR-STEM)图像的互惠空间处理方法。命名为“绝对应变”(Abstrain),它可以通过用户定义的Bravais晶格对平面间距离和角度,移位场以及应变张量组件进行定量和映射,并从特定于HR-TEM和HR-STEM成像的图像扭曲中进行校正。我们提供相应的数学形式主义。抽象超出了对现有方法的限制,即通过对感兴趣区域进行直接分析,而无需在同一视野上具有相似晶体结构的参考晶格边缘。此外,对于由两种或多种原子组成的晶体,每个原子都有其自身的子结构约束,我们开发了一种名为“相对位移”的方法,用于提取与一种原子类型的亚晶状体和测量原子色谱柱相关的子晶状体,并与与Bravais lattice lattice lattice lattice或另一个子结构相关的原子柱相关。证明了抽象和相对位移在功能性氧化物铁电异质结构的HR-STEM图像中的成功应用。
可穿戴电子产品是一种新兴技术,它实现了日常电子设备的灵活性、可穿戴性和舒适性,可广泛应用于电子皮肤[1–4]、自供电传感器[5]和健康监测[6,7]等各种应用。尽管在开发多功能可穿戴设备方面已经取得了长足的进步,但电源仍然是一个难以解决的挑战。电池和超级电容器尽管具有良好的稳定性和效率,但仍然受到寿命、刚性、体积、封装和安全性等问题的限制。[8,9]作为未来自供电技术的潜在候选者,摩擦电和压电纳米发电机(TENG 和 PENG)能够从环境(风、雨和潮汐能)和人体运动(行走、跑步、拍手和弯肘)中获取机械能,并将其转化为电能为可穿戴设备供电。 [10–15] TENG通过摩擦起电和静电感应的耦合效应产生电能,而PENG则利用压电材料变形产生的偶极矩将机械能转化为电能。两者都是很有前途的能源技术,可以满足绿色能源和可持续发展的苛刻要求。然而,这两种技术也各有优缺点。例如,由于压电材料封装方便、结构灵活,PENG通常具有更好的电稳定性和操作灵活性,但其电输出相对较低。相反,TENG通常具有更高的电输出,但是它们的工作机制,例如垂直接触分离和横向滑动模式,需要两种不同材料的相对位移,这限制了设备的配置和应用场景。因此,一种混合型TENG和PENG能量收集器(TPENG)结合它们的优点,以获得更高的功率输出并适应不同的应用,是非常可取的。