准确实时地估计航天器或空间物体的姿态是航天器在轨维修和装配任务所必需的关键能力。由于空间图像包含变化很大的照明条件、高对比度和较差的分辨率,以及功率和质量限制,因此空间物体的姿态估计比地球上的物体更具挑战性。本文利用卷积神经网络来唯一地确定感兴趣物体相对于相机的平移和旋转。使用 CNN 模型的主要思想是协助空间装配任务中使用的物体跟踪器,而仅基于特征的方法总是不够的。为装配任务设计的模拟框架用于生成用于训练修改后的 CNN 模型的数据集,然后将不同模型的结果与模型预测姿态的准确度进行比较。与许多当前用于航天器或空间物体姿态估计的方法不同,该模型不依赖于手工制作的对象特定特征,这使得该模型更加稳健,更容易应用于其他类型的航天器。结果表明,该模型的性能与当前的特征选择方法相当,因此可以与它们结合使用以提供更可靠的估计。
本文介绍了一种新颖的框架,该框架将用于特征检测的卷积神经网络 (CNN) 与协变高效 Procrustes 视角 n 点 (CEPPnP) 求解器和扩展卡尔曼滤波器 (EKF) 相结合,以实现对非合作航天器周围近距离操作的稳健单目姿态估计。在役服务航天器对非活动航天器的相对姿态估计是当前和计划中的太空任务设计中的一项关键任务,因为它与近距离操作相关,例如在轨服务和主动碎片清除。这项工作的主要贡献在于通过将协方差矩阵与 CNN 为每个检测到的特征返回的热图相关联,从图像处理步骤中获取统计信息。此信息包含在 CEPPnP 中,以提高滤波器初始化期间姿态估计步骤的准确性。导出的测量协方差矩阵用于紧密耦合的 EKF,以便更好地表示特征检测步骤中的测量误差。这提高了滤波器在 CNN 检测不准确时的鲁棒性。在目标的光照条件和部分掩蔽条件下,所提出的方法能够返回相对姿态以及相对平移和旋转速度的可靠估计值。欧洲航天局 Envisat 航天器的合成 2D 图像用于生成数据集,用于训练、验证和测试 CNN。同样,这些图像用于重建代表性的近距离场景,以验证所提出的方法。
在太空着陆操作期间,准确估计航天器的相对姿态对于确保安全成功着陆至关重要。本文提出了一种基于 3D 光检测和测距 (LiDAR) 的 AI 相对导航架构解决方案,用于自主太空着陆。所提出的架构基于混合深度循环卷积神经网络 (DR-CNN),将卷积神经网络 (CNN) 与基于长短期记忆 (LSTM) 网络的循环神经网络 (RNN) 相结合。获取的 3D LiDAR 数据被转换为多投影图像,并将深度和其他多投影图像输入 DRCNN。该架构的 CNN 模块可以有效地表示特征,而 RNN 模块作为 LSTM,可提供鲁棒的导航运动估计。我们考虑、模拟和实验了各种着陆场景,以评估所提出架构的效率。首先使用 PANGU(行星和小行星自然场景生成实用程序)软件创建基于 LiDAR 的图像数据(范围、坡度和海拔),然后使用这些数据对所提出的解决方案进行评估。建议使用 Gazebo 软件中的仪表化空中机器人进行测试,以模拟在合成但具有代表性的月球地形(3D 数字高程模型)上着陆的场景。最后,使用配备 Velodyne VLP16 3D LiDAR 传感器的真实飞行无人机进行真实实验,以在设计的缩小版月球着陆表面上着陆时生成真实的 3D 场景点云。所有获得的测试结果表明,所提出的架构能够通过良好合理的计算提供良好的 6 自由度 (DoF) 姿势精度。
航天器运营商在确定是否有必要采取防撞机动时,会采用不同的近距离指标和防撞距离。通常,航天器处于低风险轨道状态的运营商可能会以很少的燃料或运营成本实施极其保守的防撞策略,而航天器在高风险轨道状态运行的运营商则被迫采取经济的防撞策略,以避免耗尽燃料预算并给飞行动力学团队带来过重负担。不幸的是,虽然存在许多防撞机动“通过/不通过”标准,但运营商通常无法获得 SSA 信息和 SSA 精度,而这些精度对于填充最适合他们的标准是必不可少的。此外,用于填充这些标准的算法有时包含无效假设,例如在需要更复杂的公式时使用线性碰撞概率和球形物体形状近似值。虽然存在一些估计卫星物体尺寸的来源,但会合时的相对姿态可能不确定甚至不可用,特别是对于所谓的“次要”或会合物体。空间数据协会 (SDA) 是一个由全球卫星运营商组成的协会,致力于确保可控、可靠和高效的空间环境,该协会已在其成员中开展了一项调查,以收集有关其会合评估运营概念的数据。这些包括防撞通过/不通过指标、防撞目标和运营约束。任何试图向运营商提供有意义的会合评估服务的实体都可以使用这些数据来设计服务要求。本文评估了与这些不同的“通过/不通过”指标相关的空间态势感知 (SSA) 数据的各种定位精度要求,这些指标用于空间交通协调 (STC) 和空间交通管理 (STM) 的会合缓解过程。这些指标包括最接近时 (TCA) 的错失距离、组件化错失距离(例如,TCA 径向分离,即使在轨道内或轨道外分离或不确定性未知的情况下也能防止碰撞),以及最大碰撞概率和估计的真实概率。需要探讨的另一个关系是碰撞概率对 TCA 处卫星方向和配置/形状的依赖关系。由于不了解方向,计算碰撞概率时必须做出某些假设。一种常见的做法是用一个封装球体来近似航天器的硬体。这种一刀切的方法无需确定方向,但会导致物体体积被高估,概率被高估,除非两颗卫星实际上都是球体。为了产生更具代表性的概率,我们使用卫星的尺寸来定义一个包围的矩形框。通过投射比球体更小的区域,这种方法可以更准确地描绘实际的碰撞威胁,但缺点是必须在一定程度上准确了解盒子的方向。但即使选择产生最大可能覆盖范围的方向,盒子形状的概率也会低于球体。为了解决这个问题,我们估计了一系列对应于一系列方向的碰撞概率值,从中我们可以探索给定碰撞概率阈值所需的态度知识和位置精度之间的相互关系。