用于测量相对湿度的 HUMICAP® 传感器.....................................................................................................................................11 如何为高湿度应用选择合适的湿度仪器.....................................................................................................13 Insight PC 软件可轻松访问 Indigo 兼容探头.........................................................................................................................17 HMP1 壁挂式湿度和温度探头.........................................................................................................................................19 HMP3 通用湿度和温度探头.........................................................................................................................................21 HMP4 相对湿度和温度探头,适用于加压和真空过程.........................................................................................23 HMP5 相对湿度和温度探头,适用于高温过程.........................................................................................................25 HMP7 相对湿度和温度探头,适用于高湿度过程.........................................................................................................27 HMP8 相对湿度和温度探头,适用于加压和真空过程.........................................................................................29 HMP9 紧凑型湿度和温度探头.........................................................................................................................31 TMP1 温度探头................................................................................................................................................................................33 HMT330 系列湿度和温度变送器,适用于要求严格的湿度测量.......................................................................35 HMT360 系列本质安全型湿度和温度变送器,可在 0/20 区内操作....................................................................................................45 HMT310 系列湿度和温度变送器,适用于要求严格的工业应用....................................................................................51 HMT120 和 HMT130 湿度和温度变送器.........................................................................................................................................54 HMW90 系列湿度和温度变送器,适用于高性能 HVAC 应用....................................................................................................................57 HMD60 系列湿度和温度变送器,适用于要求严格的 HVAC 和轻工业应用....................................................................................................................................................................60 HMDW110 系列湿度和温度变送器,适用于 HVAC 应用中的高精度测量.............................................................................................................................................................63 HMS110 系列湿度和温度变送器,适用于楼宇自动化中的高精度室外测量应用程序............................................................................................................................................................66 用于楼宇自动化应用的 HMDW80 系列湿度和温度变送器.....................................................68 用于楼宇自动化应用中的室外测量的 HMS80 系列湿度和温度变送器......................................................................................................................................................72
额定排放电流10A最大排放电流20A最大值脉冲电流60a(<3s)排放截止电压10V电荷温度为0°C至45°C(32fto 113f) @60±25%相对湿度排放温度-20°C至60°C(-4F至140F) @60±25% @60±25%相对湿度存储温度0°C至40°C(32fto) @60°C(32fto 104f)
1.3 推荐的操作和存储条件 仅当传感器在推荐的条件下存储和操作时,才能保证表 1 中详述的气体传感规格。长时间暴露在这些条件之外的条件下可能会加速老化。操作 SGP30 的推荐温度和湿度范围分别为 5–55 °C 和 4–30 g m −3 绝对湿度(参见图 7 了解相应的相对湿度转换)。建议将传感器存储在 5–30 °C 的温度范围内,绝对湿度低于 30 g m −3(参见图 8 了解相应的相对湿度转换)。任何时候都不能将传感器暴露在冷凝条件下(即 >90 % 相对湿度)。为确保 SGP30 的稳定性能,必须满足文档 SGP 操作说明中描述的条件。另请参阅设计指南,以了解如何将 SGP30 最佳地集成到最终设备中。
降雨量 (mm) 0 0 0 0 0 最高温度 ( ᵒ C) 30 30 30 29 29 最低温度 ( ᵒ C) 18 17 17 17 17 最大相对湿度 (%) 81 77 75 78 73 最小相对湿度 (%) 30 26 30 30 28 风速 (KMPH) 10 8 11 9 6 风向 (度) 77 93 117 120 115 云量 (Okta) 5 2 3 4 3 地区 04.01.2025 05.01.2025 06.01.2025 07.01.2025 08.01.2025
锂离子电池被认为是电动汽车 (EV) 的重要电存储元件。电池模型是电池监控、高效充电和安全管理的基础。非线性建模是表征电池及其动态内部参数和性能的关键。本文提出了一种智能方案,用于对锂聚合物离子电池进行建模,同时监测其在不同环境条件(温度和相对湿度)下的当前充电电流和端电压。首先,建议的框架使用恒流恒压 (CC-CV) 充电协议研究了温度和相对湿度对充电过程的影响。随后,将监测电池周围的工作温度和相对湿度。因此,使用 Hammerstein-Wiener (HW) 模型对 EV 电池动态行为进行有效的非线性建模。HW 模型被认为是一种黑盒模型,它可以表示电池而无需任何数学等效电路模型,从而降低了计算复杂度。最后,该模型确定了不影响电池寿命的充电过程的边界。应用并进行了几个动态模型的实验测试,以确保
空气是人类生活的重要组成部分。但是,空气可以被微生物(例如空气寄生细菌和真菌)污染。房间中的温度和相对湿度会影响空气中的细菌和真菌的数量。这项研究旨在找出空气传播细菌的数量与真菌与温度和相对湿度之间的相关性。在15个微生物实验室的房间中,将Na和SDA Petri板放置在孵育后,计数每个板中的菌落数量。Pearson测试是使用SPSS进行的,以确定温度与空气传播细菌和真菌数量相对湿度之间的相关性。空气传播的细菌数量最多(352 CFU/m 3),而最低的数量是洗衣房(13 CFU/m 3),空气寄生的真菌数量最多,位于Mycology Room(156 CFU/M 3),而空气生气的Fungi则没有在静脉儿空间和些许房间中发现。基于皮尔逊测试的结果,发现p = 0.668(p> 0.5)的值表明温度与空气中细菌和真菌的数量之间没有相关性。根据Pearson检验的结果,p = 0.745(p> 0.5)的值表明,相对湿度与机载细菌和真菌的数量之间没有相关性。温度与空气传播细菌和真菌的数量之间没有相关性。
湿度也是决定金属腐蚀速率的主要因素,因为水分提供了腐蚀反应所需的电解质。一般来说,腐蚀速率随着湿度的增加而增加。在没有其他电解质的情况下,发生严重腐蚀的临界相对湿度通常为 60%。3 此临界相对湿度可能因大气中存在的杂质而异。降雨可以增加或减少腐蚀过程。在可能积聚死水的区域,最有可能形成局部腐蚀电池。但是,雨水也可能将腐蚀性沉积物从金属表面冲走,从而降低腐蚀性。
任务 3.4 收获的西红柿的地热干燥 [负责人 - EGE,合作伙伴 - IZTECH]:已在 Balçova 地热设施现场安装的地热柜式干燥机将用于干燥实验。将使用数据记录器测量温度、相对湿度和空气速度。为了确定西红柿重量的变化,将在干燥过程中使用数字称重装置(± 0.01 克)。在托盘入口、出口和环境中测量的温度、相对湿度和速度数据将用于能量和能量分析。将评估可销售产量。