相对论通过世界线将每个运动物体与一个固有时联系起来。然而在量子理论中,这种明确定义的轨迹是被禁止的。在介绍量子钟的一般特征之后,我们证明,在弱场、低速极限下,当运动状态为经典(即高斯)时,所有“良好”量子钟都会经历广义相对论所规定的时间膨胀。另一方面,对于非经典运动状态,我们发现量子干涉效应可能导致固有时与时钟测量的时间之间出现显著差异。这种差异的普遍性意味着它不仅仅是一个系统误差,而是对固有时本身的量子修改。我们还展示了时钟的离域性如何导致其测量时间的不确定性增大——这是时钟时间与其质心自由度之间不可避免的纠缠的结果。我们展示了如何通过在读取时钟时间的同时测量其运动状态来恢复这种丢失的精度。
人类将在接下来的25年中发生巨大变化,让人联想到古腾堡(Gutenberg)发明印刷机发明的第一次信息革命发生的事情。印刷机允许广泛地共享艺术,科学和工程学的知识。对这些信息的新发现均鼓励了新的表达和创新,以至于它点燃了一场始于欧洲的工业革命,并在几个世纪后在北美达到顶峰。它广泛地实现了有效和稳定的制造工艺,这些过程有助于用机器制造的商品代替手工生产的商品,减少建筑财富的摩擦,并改善了大多数人的生活水平。一场新的信息革命始于大约60年前(1950年代至1960年代),当时Shockley发明了晶体管 - 巧合的是,大约在美国启动其太空计划的同时。晶体管导致了集成电路的开发,从而促进了较小的计算机的创建,最终为互联网的出现铺平了道路。与Internet的开发并行的是对AI系统的早期探索,其中包括人工神经网络,基于知识的系统,模糊逻辑和进化计算,仅举几例。现代AI研究始于1960年代,直到计算能力急剧增加,并且互联网开始为培训模型生成大量数据,才产生显着的结果。现在,AI系统正在产生惊人的结果,并将永远改变我们的未来。
量子关联和纠缠一样,代表了量子力学的特征,对这一现代物理学支柱的诠释提出了根本问题和挑战。尽管量子关联被广泛认为是在量子技术的许多任务中实现量子优势的主要资源,但它们的完整定量描述及其背后的公理基础仍在研究中。先前的研究表明,非局域关联的起源基于捕捉(从量子形式主义之外)量子不确定性本质的原理。特别是,最近引入的相对论独立性原理产生了一种将局域关联和非局域关联交织在一起的新界限。在这里,我们通过对纠缠光子对同时实现顺序和联合弱测量来测试这种界限,这使我们能够通过测量同一量子系统上不相容的可观测量来同时量化局域关联和非局域关联,而不会破坏其状态,而这在传统(投影)量子测量框架中通常是被禁止的。我们的结果表明量子关联程度存在一个根本的限制,揭示了不确定性在实现和平衡量子关联方面的深远作用。
[ 3 ] 问题 13. E = γmc 2 和 p = γm v 守恒这两个事实是相对论的全新结果,所以建立这个理论最合乎逻辑的方式就是简单地提出这些假设,而不需要任何进一步的论证。但如果你还不相信相对论是正确的,这当然不是最令人信服的方式。最引人注目的新结果是巨大的静止能量 E = mc 2 。在爱因斯坦的一生中,他从人们更熟悉的假设出发,对这个结果进行了多次推导。在这个问题中,我们将介绍拜尔莱因对爱因斯坦 1946 年推导 E = mc 2 的简化版本。具体来说,我们将证明当静止物体的能量含量减少 ∆ E 时,其质量也会减少 ∆ E/c 2 。如果假设零质量物体没有静止能量,则结果如下。考虑一个静止的质量为 M 的物体,假设它同时向上和向下发射具有相等和相反动量 p γ 的光子。令 m 为该物体的最终质量。
在本文中,我们将证明宇宙学与普朗克尺度之间存在联系。近年来,人们已经证明,普朗克长度可以独立于 G 、¯ h 和 c 确定,而且一系列宇宙学预测可以仅从两个常数(即普朗克长度和引力速度)推导出来。引力速度可以很容易地在不知道光速的情况下确定 [ 1 , 2 ]。这为宇宙学提供了一个新的视角,并证明了普朗克尺度与宇宙学之间存在联系。这与最近将广义相对论与康普顿频率和普朗克尺度联系起来的广义相对论量化理论完全一致。我们研究了弗里德曼宇宙学和最近基于 Reissner-Nordstrom、Kerr 和 Kerr-Newman 度量的极值解引入的宇宙学。1
南加州大学是一个学习社区,致力于培养成功的学者和研究人员,致力于追求知识和思想的传播。学术不当行为与大学的使命形成鲜明对比,该使命是通过一系列的一系列学术,专业和课外课程对学生进行教育,并在提交学术工作(以草稿或最终形式)的提交中包括任何不诚实行为。本课程将遵循USC学生手册中所述的学术完整性的期望。所有学生都应在本学期中提交原始工作并专门为课程/部分准备的作业。您不得提交其他人写的工作或为其他课程准备的“回收”工作,而无需获得教师的书面许可。涉嫌从事学术不当行为的学生将报告给学术诚信办公室。其他违反学术不当行为的行为包括但不限于作弊,窃,捏造(例如,伪造数据),有明智地帮助其他人实现学术不诚实行为,以及任何旨在获得不公平学术优势的行为。
安全密钥生成的量子协议的设计面临许多挑战:一方面,它们需要在实验实现方面具有实用性。另一方面,它们的理论描述必须足够简单,以便对所有可能的攻击进行安全证明。这两个要求通常相互冲突,差分相移 (DPS) QKD 协议体现了这些困难:它被设计为可利用当前的光通信技术实现,而对于该协议,其代价是许多标准安全证明技术不适用于它。在发明约 20 年后,这项工作首次提出了 DPS QKD 针对一般攻击(包括有限尺寸效应)的完整安全证明。该证明结合了量子信息论、量子光学和相对论技术。我们首先给出 QKD 协议的安全性证明,该协议的安全性源于相对论约束。然后我们表明 DPS QKD 的安全性可以归结为相对论协议的安全性。此外,我们还表明,对 DPS 协议的连贯攻击实际上比集体攻击更强。我们的研究结果对安全可靠的量子通信技术的发展具有广泛的意义,因为它们揭示了最先进的安全证明技术的适用范围。
2指标,几何和测量学48 2.1指标和几何I:定义和示例。。。。。。。。。。。。。。。。。48 2.2指标和几何II:Lorentzian(伪里程)指标。。。。。。。53 2.3地球方程适当时间的末端。。。。。。。。。。。。56 2.4测量方程和坐标转换。。。。。。。。。。。。。。。。60 2.5大地测量的替代行动原则。。。。。。。。。。。。。。。。。。。。。64 2.6关于两个行动原则之间的关系。。。。。。。。。。。。。。。。66 2.7仿射和非携带参数。。。。。。。。。。。。。。。。。。。。。。。70 2.8示例:极坐标中的R 2中的测量学。。。。。。。。。。。。。。。。。。72 2.9示例:用于超级和直接产品指标的测量学。。。。。。。。。75