坚固而坚韧的材料是轻量化、节能应用(如电动汽车和航空航天应用)所必需的。最近发现,异质结构具有前所未有的强度和延展性,这在我们的教科书中的材料科学中被认为是不可能实现的。如此优异的机械性能是由一项新的科学原理实现的:异质变形诱导 (HDI) 强化和加工硬化。异质结构 (HS) 材料由流动应力相差巨大(> 100%)的异质区域组成。区域间相互作用在软区域产生背向应力,在硬区域产生正向应力,从而共同产生 HDI 应力。HS 材料具有显著的协同效应,其综合性能超出了混合物规则的预测。重要的是,HS 材料可以通过现有的工业设施大规模低成本生产。新材料科学和有前景的应用正在推动 HS 材料作为一个新兴领域的快速发展。为了有效地设计出性能优越的 HS 材料,有许多基本问题需要探究。要解决这些问题,需要实验材料科学、计算材料科学和力学界的共同努力。
对于无肝硬化的 HBeAg 阴性患者,治疗应至少持续到 HBs 血清转换或出现疗效丧失的证据。如果治疗时间超过 2 年,建议定期重新评估,以确认继续选择疗法仍然适合患者。 漏服剂量 如果漏服剂量与通常服药时间相差不到 18 小时,患者应尽快服用替诺福韦艾拉酚胺片 25 mg,然后恢复正常服药计划。如果与通常服药时间相差超过 18 小时,患者不应服用漏服剂量,而应恢复正常服药计划。 如果患者在服用替诺福韦艾拉酚胺片 25 mg 后 1 小时内呕吐,则应服用另一片药片。如果患者在服用替诺福韦艾拉酚胺片 25 mg 后 1 小时以上呕吐,则无需服用另一片药片。特殊人群 老年人 65 岁及以上患者无需调整替诺福韦艾拉酚胺片 25 mg 的剂量(参见 5.2 节)。 肾功能不全 对于估计肌酐清除率 (CrCl) ≥ 15 mL/min 的成人或青少年(年龄至少 12 岁,体重至少 35 kg),或 CrCl < 15 mL/min 正在接受血液透析的患者,无需调整替诺福韦艾拉酚胺片 25 mg 的剂量。在血液透析当天,应在完成血液透析治疗后服用替诺福韦艾拉酚胺片 25 mg(参见 5.2 节)。对于未接受血液透析的 CrCl < 15 mL/min 的患者,无法提供剂量建议(参见 4.4 节)。肝功能损害:肝功能损害患者无需调整替诺福韦艾拉酚胺片25毫克的剂量(参见【用法用量】和【用药】)。儿科人群:尚未确定替诺福韦艾拉酚胺片25毫克对12岁以下或体重<35公斤儿童的安全性和有效性。暂无相关数据。
腐蚀风险对满足在恶劣环境下使用的微电子设备的严格可靠性要求构成挑战。微电子设备通常封装在聚合物封装材料中,以防止腐蚀。然而,这些聚合物并非完全密封,因此允许少量离子和水分进入设备,这可能会导致微电子电路腐蚀。为了提高和预测设备的可靠性,量化这些材料中的离子扩散率非常重要。以前报告的离子扩散率值对于同一类材料来说相差多个数量级。在这里,我们使用三种实验方法调查这种差异的原因:(i) 盐水浸泡、(ii) 扩散池测量和 (iii) 瞬态电流测量。测试了几种材料,例如硅树脂、环氧树脂和聚酰胺,以涵盖微电子行业使用的广泛聚合物。我们发现,差异可能是由于离子扩散率对聚合物中的水分含量以及溶质的盐浓度和 pH 值有很强的依赖性。此外,我们发现,极低的离子扩散率会导致测量时间过长,因此样品中因污染、泄漏或微小缺陷而导致误差的风险很大。
对于有偏 Pauli 噪声,Kitaev 表面码的各种实现都表现得出奇的好。受这些潜在收益的吸引,我们研究了通过应用单量子比特 Clifferd 算子从表面码中获得的 Clifferd 变形表面码 (CDSC) 的性能。我们首先分析 3 × 3 方格上的 CDSC,发现根据噪声偏差,它们的逻辑错误率可能会相差几个数量级。为了解释观察到的行为,我们引入了有效距离 d ′ ,它可以缩短为无偏噪声的标准距离。为了研究热力学极限下的 CDSC 性能,我们专注于随机 CDSC。利用量子码的统计力学映射,我们发现了一个相图,该相图描述了在无限偏差下具有 50% 阈值的随机 CDSC 家族。在高阈值区域,我们进一步证明,典型代码实现在有限偏差下优于最著名的平移不变代码的阈值和亚阈值逻辑错误率。我们通过构建属于高性能随机 CDSC 系列的平移不变 CDSC 来证明这些随机 CDSC 系列的实际相关性。我们还表明,我们的平移不变 CDSC 优于众所周知的平移不变 CDSC,例如 XZZX 和 XY 代码。
摘要:20 世纪 80 年代,Coleman 以及 Giddings 和 Strominger 的研究将时空虫洞的物理学与“婴儿宇宙”和一系列理论联系起来。我们重新审视这些想法,使用与负宇宙常数和渐近 AdS 边界相关的特征来强化结果,引入视角的变化,并与最近关于 Page 曲线的复制虫洞讨论联系起来。一个关键的新功能是强调零状态的作用。我们在简单的体拓扑模型中详细探索了这种结构,这些模型使我们能够计算相关边界理论的全部范围。渐近 AdS 希尔伯特空间的维度变成了一个随机变量 Z ,其值可以小于理论中独立状态的简单数量 k 。对于 k > Z ,一致性源于引力路径积分定义的内积的精确退化,因此许多先验独立状态仅相差一个零状态。我们认为,任何一致的引力路径积分都必须具有类似的特性。我们还评论了外推到更复杂模型的其他方面,以及对上述集合中各个成员的黑洞信息问题的可能影响。
本文研究了用于定量末端链研究中使用的四种替代数据收集方法的方法之间的收敛有效性。基准方法是常规的APT方法(即纸笔方法),其中要求受访者指示产品属性与消费者的好处之间的现有联系(即ab),以及在征服和消费者价值(BV)之间。替代数据收集方法是口头访谈(VI),两种类型的综合访谈(CP和CR),每种访谈仅在AB和BV链接与受访者之间差的顺序相差。结果表明,未建立所有四种数据收集方法之间的方法之间的收敛有效性。但是,当将两种替代数据收集方法(特别是:CP和VI)与常规APT方法进行比较时,在某种程度上支持了方法之间的收敛有效性。唯一产生结果的数据收集方法(即consumer m-e-cs)与常规APT方法明显不同的是计算机访谈,其中AB和BV链接以(部分)随机顺序与受访者(即CR方法)。2005 Elsevier Ltd.保留所有权利。2005 Elsevier Ltd.保留所有权利。
摘要 — 自 2018 年 10 月 29 日发射以来,Diwata-2 已在轨运行三年。因此,其轨道配置的影响比早期阶段更加明显。本文研究了轨道漂移对影响卫星运行的当前问题(如卫星通信和图像质量)的影响。通过五次模拟,包括确定可接受的通行极限、菲律宾上空的顶点事件、通行时间的变化以及卫星时间分辨率的变化,发现卫星通行时间与发射时的设计时间相差了一个多小时。其节点进动率增加,导致通行时间推迟。卫星的时间分辨率也从 31 天变为 11 天,但代价是覆盖面积减少。使用历史双线元素 (TLE) 数据,还模拟了未来的通行。结果发现,目前存在天底指向盲区问题,覆盖了菲律宾整个面积的 58%。还进行了两项预测,以确定卫星何时在当地时间下午 3 点通过。第一种是使用卫星中天事件的线性回归,第二种是使用卫星的历史 TLE。两种预测都一致认为该事件将在 2023 年 8 月发生。因此,在此限制之后,大部分通过都不适合获取图像。
混纺是一种混合过程,其中将两种或多种不同的纤维组合成所需的百分比。在纱线纺纱系统中,可以混合不同的成分、长度、直径或颜色以产生混纺纱。在该系统中,各种纤维组合成均质质量,然后纺成短纤维纱。通常,黄麻和棉纤维混合在一起制成黄麻棉混纺纱。黄麻的多样化用途是混纺纱的一种方式。使用 30%:40%:30% 的比例来制造黄麻棉粘胶混纺纱。棉纺生产线中的转子架生产黄麻棉粘胶混纺纱和 100% 纯棉纱。测量了黄麻棉粘胶混纺纱和 100% 纯棉纱的物理特性,如支数、纱线 Lea 强度和 CSP。其中,黄麻-棉-粘胶混纺纱与纯棉纱的平均支数相近,分别为6.0和5.89。但纯棉纱和黄麻-棉-粘胶混纺纱的纱线强度和CSP分别为318.6磅、208磅和1876、1246,相差较大。混纺纱的CV%、SD、PMD与纯棉纱一致。本研究首次将粘胶与黄麻、棉进行混纺,生产出黄麻-棉-粘胶混纺纱,并对两种纱线的物理性能进行了比较。
尽管哺乳动物的大脑大小相差五个数量级,但它们具有许多共同的解剖和功能特征,这些特征转化为皮质网络的共性。在这里,我们开发了一个机器学习框架来量化加权区域间皮质矩阵的可预测程度。部分网络连接数据是通过采用一致方法生成的逆向追踪实验获得的,并辅以非人类灵长类动物(猕猴)和啮齿动物(小鼠)的投影长度测量。我们表明,这两个物种的区域间皮质网络都具有显著的可预测性。在二进制级别,对于猕猴,链接是可预测的,ROC 曲线下面积至少为 0.8。加权中和强链接的可预测准确率为 85% – 90%(小鼠)和 70% – 80%(猕猴),而这两个物种的弱链接都不可预测。这些观察结果证实了先前的观察结果,即中尺度皮层网络的形成和演化在很大程度上是基于规则的。使用本文介绍的方法,我们对所有区域对进行了归纳,为两个物种的完整区域间网络生成了样本。这对于在物种内和物种间以最小偏差进行连接组比较研究是必要的。
直接空气碳作为一种负排放技术,对于降低大气中的二氧化碳浓度至关重要。伴随着这项技术的开发和应用,与直接空气碳捕获相关的高能源需求和大量资本成本一直存在。本文旨在分析利用氢氧化物燃料电池的技术和经济可行性,以作为直接空气碳捕获的过程的电力和高级热量的来源。至关重要的是,使用可再生的氢产量的可再生形式是可持续的,因此,对50 MW固体氧化物燃料电池进行了建模,可再生的氢供应50 mW固体氧化物燃料电池,并与直接的空气碳捕获过程集成,从而使系统能够直接从空气中直接删除270 kt/年的碳二氧化碳。该系统的当前捕获成本与可再生氢的价格相差很大,估计范围为314 - 1,505英镑,每吨二氧化碳捕获。随着可再生氢的成本在将来下降,这种过程可能成为天然气饲料直接空气捕获的可行替代品,预计每吨的捕获成本为2050英镑。