摘要:近年来,光子计算的显着进步突显了需要光子记忆,尤其是高速和连贯的随机记忆。应对实施光子记忆的持续挑战才能充分利用光子计算的潜力。基于刺激的布里鲁因散射的光子传声记忆是一种可能的解决方案,因为它一致地将光学信息传递到高速下的声波中。这样的光声内存具有巨大的潜力,因为它满足了高性能光随机记忆的关键要求,因为它的相干性,芯片兼容性,频率选择性和高带宽。但是,由于声波的纳秒衰减,到目前为止,迄今为止的存储时间仅限于几纳秒。在这项工作中,我们通过实验增强光声内存的固有存储时间超过1个数量级,并在存储时间为123 ns后连贯地检索光学信息。这是通过在4.2 K处高度非线性纤维中使用光声记忆来实现的,从而使内在的声子寿命增加了6倍。我们通过使用直接和双同性恋检测方案测量初始和读数光学数据脉冲来证明我们的方案能力。最后,我们分析了4.2 - 20 K范围内不同低温温度下光声记忆的动力学,并将发现与连续波测量值进行了比较。关键字:布里渊散射,光子神经形态计算,光学记忆,非线性光学,低温■简介延长的存储时间不仅对光子计算,而且对需要长声子寿命的Brillouin应用程序,例如光声过滤器,真实时延迟网络和微波光子学中的合成器。
最近开发了Terahertz(THZ)二维相干光谱(2DC)是一种强大的技术,可以以与其他光谱镜的方式获取材料信息。在这里,我们利用THZ 2DC研究了常规超导体NBN的THZ非线性响应。使用宽带THZ脉冲作为光源,我们观察到了一个三阶非线性信号,其光谱成分的峰值达到了超导间隙能量2δ的两倍。具有窄带Thz脉冲,在驱动频率ω处鉴定出THZ非线性信号,并在ω¼2δ时在温度下表现出谐振剂的增强。一般的理论考虑表明,这种共振只能由光激活的顺磁耦合引起。这证明了非线性THZ响应可以访问与磁磁性拉曼样密度波动不同的过程,据信这在金属的光学频率下占主导地位。我们的数值模拟表明,即使对于少量疾病,ω¼2δ共振也是由整个研究疾病范围内的超导振幅模式主导的。这与其他共振相反,其振幅模式的贡献取决于疾病。我们的发现证明了THZ 2DC探索其他光谱学中无法访问的集体激发的独特能力。
相干的光藻效应导致在相干光束的吸收干扰下产生电流,并允许铭文的空间充电光栅铭文,从而导致二阶敏感性(𝝌(2))。铭刻的光栅会自动导致干扰光束之间的准阶段匹配。理论和实验研究,考虑到第二次谐波产生的堕落病例,显示出显着的转化效率提高。然而,理论和实验之间的联系尚未完全确定,因此对于给定材料平台的一般准则和可实现的转换效率仍不清楚。在这项工作中,在理论上分析了光学波导中相干光钙化效应的现象学模型。该模型预测了非排优体总和生成的存在准阶段匹配光栅,这是第一次在实验中确认。此外,配制了连贯的光藻过程中空间充电光栅铭文的时间动力学。基于开发的理论方程式,提取了氮化硅化学过程的材料参数。获得的结果提供了比较不同平台的性能和潜力的基础。这项工作不仅补充了一致的光钙效应理论,而且还使我们能够确定关键参数和限制因素,以铭文(2)光栅。
在 t 2 时刻发射的辐射能仍为 ff 1 2 f , dtttrg ,其中 ( ) ( ) ( ) † ff 1 2 ff 1 2 , tr , ttttaa ρ r = 。因此 ( ) ( ) 2 2 2 1 2 f , d G tttg
实现了对大气参数的依赖性。提出了新颖的简化指标来评估CBC的性能。几个光束pro纤维(超高斯,截短的高斯等)和gemetries在远端的最大强度方面进行了分析。提出了取决于油炸半径的PCBC效率的近似公式。将CBC建模的结果与湍流气氛中高斯束传播模型的结果进行了比较。分析了CBC性能对C N 2参数,范围和高程角的依赖性。可以得出结论,如果没有有效的自适应光学系统,CBC在中和远程传播中的应用是不切实际的。©2020中国军械学会。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
在 PC IV 中,您已经学习了布洛赫方程、拉比振荡和脉冲序列,它们是基于核或电子自旋与无线电波之间的相干相互作用来提取有关物质结构和动力学特性的有用信息的方法。原则上,这些方法可以转移到光谱学领域以达到相同的目的。不幸的是,在光频率下,人们必须处理不同的、更快的松弛过程,这些过程会破坏相干性。例如,在 NMR 中,由于 ν 3 缩放(其中 ν 是发射频率),自发辐射非常慢,以至于它对使自旋系统达到热平衡的贡献可以忽略不计。相反,在光频率下,自发辐射是最重要的退相干源之一。尽管如此,激光源和技术的进步为原子和分子的相干操控提供了大量可能性,如今这些可能性在量子信息科学和飞秒化学等不同领域都有重要应用。