LiDAR是在1960年Theodore Maiman发明红宝石激光器之后才被广泛认可的,从技术革新来看,LiDAR经历了四个阶段。1960年,Theodore Maiman和他的同事在休斯研究实验室将高功率闪光灯照射在红宝石棒上,触发了一束相干光:第一束激光器。由于激光具有亮度好、方向性好、抗干扰等特点,激光技术被广泛应用于测距。与一般的测量方法相比,它具有精度高、分辨率高、体积小、使用方便、全天候等优点,在对地观测、环境监测、侦察等领域发挥着重要作用。同其他技术一样,激光也引起了军方的重视,很快美国军方就开始了军用激光装置的研究,第一台军用激光测距仪在1961年通过了军方试验,很快就投入了实用化。1971年,美国军方首创了世界上第一台红宝石激光测距系统:AN/GVS-3,这台第一代测距仪由光电倍增管探测器和红色外宝石光激励器组成,由于存在体积大、重量重、功耗大等缺点,很快就被第二代测距系统所取代,该测距系统采用近红外钕激光器(主要是Nd:YAG激光器)和PIN光电二极管或雪崩光电二极管,体积更小,功耗更低。随着这项技术的日趋成熟,随着20世纪70年代YAG激光技术的成熟,应用于长、中、短程激光测距雷达已成为必然趋势,1977年美国研制成功第一台手持式小型激光测距仪。 Nd:YAG激光测距仪:AN/GVS-5型,特点:尺寸与标准7-50军用望远镜相当,总重量只有2kg,适合手持使用,20世纪70年代末到80年代中期,激光测距仪成为军用激光市场上最大的采购项目[10]。起初激光测距主要用于军事和科研,在工业仪器中很少见,因为激光测距传感器太贵,一般在几千美元,高昂的价格一直是阻碍其广泛使用的主要原因。然而,由于技术的重大进步,价格已降至几百美元,使得它有可能成为一种具有成本效益的测量仪器。
摘要 热辐射在能量转换过程中起着重要作用。利用纳米材料和光子结构调整热辐射的能力可以为能源和信息应用带来重要机遇。在本次研讨会上,我将介绍我最近关于控制热辐射进行能量收集、主动制冷和被动冷却的研究。首先,我将讨论基于纳米级辐射传热的能量转换实验 [1-2],这些实验为热能收集指明了新的机会。具体来说,我将描述一个纳米间隙近场热光伏实验 [2],我证明了通过将热热发射器和光伏电池之间的距离缩小到纳米级,可以大大提高发电率(40 倍)。其次,我将描述使用非相干光(热辐射)通过控制光子的化学势进行主动光子制冷的首次实验演示 [1]。我将说明如何通过将表面放置在反向偏置发光二极管附近来实现表面的净冷却。冷却是由于反向偏置二极管的热辐射被抑制,以及跨纳米级间隙表面的光子发射增强所致。这为将纳米光子学和光电器件相结合实现固态制冷指明了一条有前途的道路。第三,我将讨论如何利用寒冷的外层空间 [3-4] 作为热力学资源用于被动冷却和能源效率应用。我将展示将太阳能吸收器的温度降低 13 ˚C 同时保持其阳光吸收率的结果,这表明太阳能电池的效率显著提高 [3]。接下来,我将展示通过使用超选择性热发射器和真空系统实现创纪录的 42 ˚C 温度降低的结果 [4]。最后,我将概述我未来的研究方向。传记朱林晓博士在斯坦福大学获得应用物理学博士学位和电气工程硕士学位,在中国科学技术大学获得物理学学士学位。他的博士研究方向为利用光子结构控制电磁传热,指导教授为范山辉教授。朱博士目前是密歇根大学机械工程系的博士后研究员,师从 Pramod Reddy 教授和 Edgar Meyhofer 教授,从事近场能量转换实验。朱博士的研究兴趣在于控制光和热以用于能源和信息应用。他曾被《麻省理工技术评论》评为 35 位 35 岁以下创新者(中国 2019 年)。他的研究成果曾被《发现》、《科学美国人》等媒体报道。
相干态是一个重要的概念,其特征值关系为 ˆ a | α = α | α as,是研究和描述辐射场的一个非常方便的基础,它是由薛定谔于 1926 年在对量子谐振子的研究 1 – 4 中首次提出的。然而,基于相干态和光电检测的量子相干理论已由 Glauber、Wolf、Sudarshan、Mandel、Klauder 等人在 20 世纪 60 年代初发展起来,它与经典辐射场中的量子态最为相似,因此被认为是经典力学和量子力学的边界。Glauber 的创新工作于 2005 年获得诺贝尔奖,以表彰他。事实上,相干态已经成为量子物理学中最常用的工具之一,在各个领域,特别是在量子光学和量子信息中发挥着非常重要的作用。相干态使我们能够使用 Wigner 等人早期开发的准概率来描述光在相空间中的行为 7 。相干态的重要性在于它们的概括已被证明能够呈现非经典辐射场特性 8 – 10 。激光作为一种极具潜力的相干光的表现标志着对光与物质之间非线性相互作用的广泛研究的开始 11 。这可以通过实验通过将相干态穿过克尔介质来实现,这是由于出现了可识别的宏观相干态叠加,即所谓的猫态 12 。当克尔介质的入口状态是正则相干态时,Kitagawa 和 Yamamoto 引入了克尔态作为克尔介质的输出 13 。克尔效应会产生正交压缩,但不会改变输入场光子统计特性,即它仍然是泊松分布,这是正则相干态输入的特性,用于产生相干态的叠加 14 – 16 。这里值得注意的是,光在克尔介质中的扩散也以非谐振荡器样本为特征,非谐项取为 ˆ np ,其中 p 为整数(p > 1)17 , 18 。该振荡器模式可以被评估为描述注入具有非线性磁化率的传输线(例如光纤)的相干态的演变。用相干态的量子力学描述的激光束在通过非线性介质时会经历各种复杂的改变,包括量子态的崩溃和复活。在任何线性或非线性的演变中,耗散总是会发生。耗散效应通常导致振幅的减小,但是,如果相互作用发生在原子尺度上,量子效应就会很显著 19。非线性相干态是标准相干态最突出的概括之一 20 。一个合适的问题是:如果初始相干态的时间演化受到时间相关谐振子哈密顿量的影响,并与时间相关外部附加势 21 – 24 耦合,会发生什么情况?时间相关谐振子有很多种,例如参数振荡器 11、25 、卡尔迪罗拉-卡奈振荡器 26、27 和具有强脉动质量的谐振子 28 。
房间:106 Spalding 实验室 检测和操纵压缩光用于量子计量和通信 Esme Knabe 导师:Maria Spiropulu 压缩光是一种亚泊松非经典光状态,在精密测量和量子通信等领域有广泛的应用。由于与现实世界系统的相关性,开发能够与现有光学和光子设备集成的压缩光过程至关重要。为此,该项目旨在展示使用桌面设备和集成光子学测量和操纵压缩光的相空间。这项工作的一些贡献包括但不限于压缩态的相位锁定以实现确定性相位旋转、通过将相干光与压缩光混合来产生位移压缩态、以及优化压缩光实际量子应用实验。通过量子电路假设搜索,使用量子生成对抗网络生成逼真的 LHC QCD 模拟 Yiyi Cai 导师:Maria Spiropulu、Jean-Roch Vlimant 和 Samantha Davis 经典生成模型已被证明有望成为替代生成模型,可以取代部分或全部对撞机数据的详细模拟链,尤其是在 LHC 中。由于初态希尔伯特空间大小的指数缩放和量子系统的内在随机性,量子-经典混合生成模型可以提供更高的精度和性能。这种方法的一个局限性是可以任意选择所用量子电路的假设。我们研究了量子-经典生成对抗模型的性能,以使用变分量子电路作为模型的生成部分来模拟 LHC 上强子喷流的特征,并进一步搜索电路假设空间以找到性能最佳的电路。我们对强子喷流数据集中量子-经典混合生成对抗模型的性能得出结论,并对此类方法在 LHC 上的可用性进行了展望。时间箱量子密钥分发密钥交换 Ismail Elmengad 导师:Maria Spiropulu 和 Anthony LaTorre 量子密钥分发 (QKD) 使双方 Alice 和 Bob 能够实现信息论安全通信。这意味着无论多少计算资源都无法让第三方访问 Alice 和 Bob 的通信。量子比特可以用几种方式编码。该项目将使用时间箱协议来交换量子比特。光子要么在时间基础上准备,它们落入早期或晚期时间箱,类似于经典信息中的 0 和 1,要么在相位基础上准备,这是早期和晚期状态的叠加。通过表征影响量子比特错误率 (QBER) 的各种因素,例如暗计数、脉冲宽度、QBER 稳定性,相位调制等。我们希望通过光纤介质实现任意长度的有效密钥交换。QKD 是通过光纤和视距自由空间环境进行安全通信的一个令人兴奋的前景。用于量子网络的时间箱编码光子量子比特的 Greenberger-Horne-Zeilinger (GHZ) 状态的生成 Nassim Tavakoli 导师:Maria Spiropulu、Samantha Davis、Raju Valivarthi 和 Nikolai Lauk 量子纠缠是量子信息应用(如量子计算、通信和计量)的重要资源,有望实现计算加速、信息论安全通信和增强的传感能力。该项目将重点研究由三个纠缠粒子组成的 GHZ 状态。我们旨在使用光纤耦合元件、体非线性和最先进的超导纳米线单光子探测器(SNSPD)生成时间箱量子比特的 GHZ 状态。纠缠光子可以通过自发参数下变频和连续波泵浦光后选择产生。这些“飞行量子比特”通过基于到达时间的时间箱技术传输编码的信息。这一演示将是迈向现实世界量子网络的重要一步,这是一种更有效地生成量子隐形传态所需状态的方法。