我们发现了研究两级原子与两个腔中的一个腔在相干叠加中相互作用的新特征。Jaynes-Cummings 模型用于描述原子场相互作用并研究量子不确定性对这种相互作用的影响。我们表明,以未定义的方式对两个腔进行相干控制可以实现按需操纵原子动力学的新可能性,而这在传统方式中是无法实现的。此外,我们还表明,原子的相干控制会产生高度纠缠的腔场态,呈贝尔态或薛定谔猫态。我们的研究结果对理解和利用相干控制的量子系统迈出了一步,并为利用量子不确定性研究原子场相互作用开辟了一条新的研究途径。
根据相对论,理想时钟的读数被解释为沿着它在时空中的经典轨迹所经过的固有时。相反,量子理论允许将许多同时的轨迹与一个量子钟关联起来,每个轨迹都有适当的权重。在这里,我们研究叠加原理如何影响简单时钟(一个衰减的两能级原子)观察到的引力时间膨胀。将这样的原子置于位置叠加中使我们能够分析量子贡献对自发辐射中经典时间膨胀的表现。特别地,我们表明,在引力场中分离波包的相干叠加中制备的原子的发射率不同于这些波包的经典混合中原子的发射率,这引起了量子引力时间膨胀效应。我们证明了这种非经典效应也表现为原子内部能量的分数频率偏移,该偏移在当前原子钟的分辨率范围内。此外,我们还展示了空间相干性对原子发射光谱的影响。
路径同一性是众多新型量子信息应用的基础,近年来引起了人们的广泛兴趣。在这里,我们通过实验演示了四光子态的两个不同来源的量子相干叠加,其中多光子受挫干涉由于路径同一性的量子不可区分性而出现。量子态是在一个集成硅光子芯片上的四个概率光子对源中创建的,其中两种组合可以创建光子四联体。分布的四个光子的相干消除和恢复完全由调谐相位控制。实验产生了两种可能创建光子四联体的方式的特殊量子干涉,而不是光子不同固有性质的干涉。除了许多已知的潜在应用之外,这种多光子非线性干涉还为各种基础研究提供了可能性,例如具有多个空间分离位置的非局域性。
近年来,由于实验技术的进步,量子通信的实际应用,即利用基本粒子的量子态进行信息编码传输,迈向了一个新的发展阶段[1–3]。结果表明,超选择现象在量子信息传输研究中起着重要作用[4, 5]。自然界中,只可能发生对应于电荷超选择算符的同一特征值的态的相干叠加,而超选择规则[6]禁止发生对应于其不同值的叠加态。不同区域的任何纯态叠加都会导致密度矩阵描述的混合态。在论文[7]中,我们提出了一个代数模型,用于研究具有非阿贝尔超选择规则的少核子系统。本文的目的是利用该模型描述在非阿贝尔同位旋超选择规则存在的情况下,借助核子进行的量子信息传输。
摘要:量子技术的全面发展需要易于制备的材料,在这些材料中可以有效地引发、控制和利用量子相干性,最好是在环境条件下。胶体生长的量子点 (QDs) 的固态多层膜非常适合这项任务,因为可以通过调节尺寸、点间连接器和距离来组装电子耦合 QDs 网络。为了有效地探测这些材料的相干性,需要对它们的集体量子力学耦合态进行动态表征。在这里,我们通过二维电子光谱探索了电子耦合的胶体生长的 CdSe QDs 的固态多层膜的相干动力学,并通过详细的计算对其进行了补充。在环境条件下捕获了多个 QD 上非局域化相干叠加态的时间演化。因此,我们为此类固态材料中的点间相干性提供了重要证据,为这些材料在量子技术中的有效应用开辟了新途径。■ 简介
量子状态的相干叠加是量子信息处理的重要资源,它将量子动力学和信息与经典对应物区分开。在本文中,我们确定了在宽泛的环境中传达量子信息的相干要求,包括受监视的Quanth Quanth动力学和量子误差校正代码。我们通过考虑由两个对手Alice和Eve之间玩过的量子信息游戏生成的混合电路来确定这些要求,Alice和Eve之间通过对固定数量的量子台进行应用和调查来竞争。Alice应用单位人员试图维持量子通道的容量,而EVE则应用测量方法来摧毁它。通过限制每个对立面可用的连贯性生成或破坏操作,我们确定了爱丽丝的连贯要求。当爱丽丝扮演旨在模仿通用监测量子动态的随机策略时,我们会发现纠缠和量子通道容量中的相干相变。然后,我们得出一个定理,给出了爱丽丝在任何成功策略中要求的最小相干性,并通过证明连贯性在任何stabelizer量子误差校正代码中的代码距离上设置了上限。这样的界限提供了对量子通信和误差校正的相干资源要求的严格量化。
一些正振幅,因此它们总体上相互抵消。通常,量子程序的输入和输出是经典字符串,因此我们输入一个基向量并在最后进行测量,以上述规则给出的概率获得每个状态。“量子程序”只是这些操作的有序列表,以及每个操作所作用的量子位,而有效的量子可计算函数是具有有效量子算法的函数(即至少有 2/3 的概率得到正确答案)。有效的量子程序是有效经典程序的超集,因为它们的门集中包含 CX 和 X 门(从我们给出的集合来看,这并不明显;但确实如此)。此外,如果我们考虑将 H 应用于纯量子位,然后立即进行测量,我们会得到一个随机输出。这样,我们可以看到有效的量子程序也是有效随机程序的超集。它们比随机程序更强大这一点可能并不明显,因为迄今为止讨论的唯一新颖的能力是破坏性干扰。我们将在后面的章节中看到如何利用此属性来提高计算速度。当向量 | ψ ⟩ 具有许多非零项时,它被称为“相干叠加”,重要的是要理解这与概率混合有着根本的不同。以下状态
我提出了一种新颖的量子理论解释,我将其称为基于环境确定性的 (EnDQT)。与众所周知的量子理论解释相比,EnDQT 的优点在于不添加非局部、超确定性或逆因果隐藏变量。此外,它通过提供量子相关性的局部因果解释,与相对论因果关系无关。此外,测量结果不会根据系统或世界等而变化。它是一种保守的 QT,因为与自发坍缩理论等理论不同,无需修改量子理论的基本方程即可确定确定值何时出现。此外,原则上,任意系统都可以在任意时间内处于相干叠加状态。根据 EnDQT,在宇宙演化的某个阶段,某些系统通过非确定性过程获得了具有确定值的能力并产生具有确定值的其他系统。此外,这种能力通过系统之间的局部相互作用传播。当系统与具有这种能力的其他系统隔离时,原则上它们可以无限地统一演化。EnDQT 可能通过启动相互作用链的系统特征为物理学的其他领域及其基础(如宇宙学)带来回报。
简介。算符本征态之间的转换概率在量子力学中起着核心作用。假设驱动系统在时间 t 1 处于给定本征态 | j 1 ⟩ ,则系统在稍后时间 t 2 处于本征态 | j 2 ⟩ 的概率为 P j 1 ,j 2 = |⟨ j 2 | U ( t 2 − t 1 ) | j 1 ⟩| 2 ,时间演化算符为 U ( t 2 − t 1 ) [1]。则测量相应本征值 j 1 和 j 2 的概率为 P j 1 ,j 2 P j 1 ,其中 P j 1 是初态的占据概率。这种联合概率通常通过投影测量确定 [1]。然而,本征态的相干叠加可能对动力学产生深远影响,在量子理论中无处不在 [2]。由于射影测量会破坏线性组合,因此开发非射影方法来测量(多个)任意状态之间的联合概率至关重要。在这方面,动态贝叶斯网络提供了一种强大的形式化方法,可以分析一组与时间相关的随机量的条件依赖关系。在这种方法中,动态变量之间的关系通过经贝叶斯规则评估的条件概率来指定 [3–6]。它们在统计学、工程学和计算机科学中得到了广泛的应用,用于在概率模型中对时间序列进行建模。具体的应用包括预测未来事件、推断隐藏的
过程控制、污染监测和即时诊断的需求推动了化学和生化传感器的发展以及传统分析方法的改进。传感器的发展趋势是小型化、阵列并行化、降低检测限以及与化学计量学方法相结合,以应对新的分析应用领域。几年前,光学和电分析技术取得了突破性进展,此后,生化和化学传感器的传导方法的新颖性逐渐消退,创新动力正在减弱。尽管如此,识别元素的新策略以及能够测量样品中最小体积的极低浓度以监测细胞内过程的兴趣,增加了人们对进入传感新领域的兴趣[1]。量子计算的最新成功影响了工业 4.0 中一个领域的发展——量子传感的发展[2]。量子计算机最常用的方法是基于量子比特的量子电路,这与经典的量子态方法不同。与传统方法不同,量子比特系统并不处于确定的状态——它是 0 和 1 两个状态的平均值,根据量子力学,它可以是两者的相干叠加。测量量子比特会破坏这种相干性。此外,两个相互作用或具有特殊接近度的粒子可以表现出量子纠缠等物理现象;即使相距很远,在这种情况下也无法独立描述每个粒子的量子态。这种系统的可能实现是带电离子或自旋量子比特。带电离子对电场敏感,而基于自旋的系统主要对磁场作出反应。然而,两者都表现出所谓的内在敏感性,即它们表现出