量子相干性是量子力学中的一个基本概念,代表了将量子力学与经典物理学区分开的最基本特征之一。量子相干性是多粒子干扰和量子纠缠的基础。它也是量子光学,量子信息等各种物理现象的重要成分。近年来,通过基于资源理论框架的量子相干测量方案的提议,已广泛研究了量子相干性作为量子资源。本文回顾了量子相干性的资源理论,并介绍了量子相干性在量子计算,量子信息和跨学科领域的重要应用,尤其是在量子热力学和量子生物学中。量子相干性及其应用仍在探索和开发。我们希望这篇评论可以为相关研究提供灵感。
总体而言,经典力学是一种非常成功的物理现象描述方法,因为大多数现代工程问题和情况不需要超出经典力学所提供的描述。然而,自上个世纪初以来,人们开始清楚地认识到,实际的物理现实超出了经典描述的范围,需要一种新的方式来描述它。这种描述物理现象的新方法现在被称为量子力学。虽然在大多数情况下,似乎需要量子力学来描述微观世界中的物理现象,而经典力学足以描述宏观现象,但现代实验的进步已经证实,长度尺度上的区分并不正确。事实上,现在人们已经明白,无论物理系统是宏观的还是微观的,量子描述都是正确的描述。然而,在宏观世界中,经典描述足以描述大多数物理现象,因此在这种情况下,并不一定需要量子描述。
我们通过引入和研究汉密尔顿量的相干性生成能力,探索通过幺正演化产生量子相干性的方法。这个量被定义为汉密尔顿量可以实现的最大相干性导数。通过采用相干性的相对熵作为我们的品质因数,我们在汉密尔顿量的有界希尔伯特-施密特范数约束下评估最大相干性生成能力。我们的研究为汉密尔顿量和量子态提供了闭式表达式,在这些条件下可以产生最大的相干性导数。具体来说,对于量子比特系统,我们针对任何给定的汉密尔顿量全面解决了这个问题,确定了导致汉密尔顿量引起的最大相干性导数的量子态。我们的研究能够精确识别出量子相干性得到最佳增强的条件,为操纵和控制量子系统中的量子相干性提供了有价值的见解。
量子力学最引人注目的特性之一是,量子系统的状态可以表示为不同物理态的相干叠加,即与某些可观测量的实际可测值相对应的特征态。由于这些特征态构成了完全可区分状态的基础,因此这种线性展开的系数也取决于基础。所有纯量子特性都与量子相干性的存在密切相关,量子相干性在实验中表现为干涉和量子涨落 [1]。人们确实认为从经典世界到量子世界的转变是由于退相干 [2]。保持量子相干并从而对抗退相干是量子信息处理协议 [6] 面临的最基本挑战之一 [3–5]。
在初级原子铯喷泉钟的不确定性预算中,对超精细时钟跃迁的频率牵引偏移的评估,迄今为止都是基于为铯束钟开发的方法,这种偏移是由其附近跃迁的意外激发(拉比和拉姆齐牵引)引起的。我们重新评估了喷泉钟中的这种频率牵引,并特别关注了初始相干原子态的影响。我们发现,由于亚能级粒子数不平衡和初始原子基态的状态选择超精细分量中的相应相干性,拉姆齐牵引导致的频率偏移显著增强。在原子喷泉钟中对此类偏移进行了实验研究,并证明了与模型预测的定量一致性。
1 加拿大国家研究委员会,加拿大安大略省渥太华 K1A 0R6 2 多伦多大学物理系,加拿大安大略省多伦多 M5S 1A7 3 瓜达拉哈拉大学物理系,墨西哥哈利斯科州瓜达拉哈拉 44420 4 湖首大学物理系,加拿大安大略省桑德贝 P7B 5E1 5 马克斯普朗克光物理研究所,德国埃尔朗根 91058 6 俄罗斯科学院应用物理研究所,俄罗斯下诺夫哥罗德 603950 7 德克萨斯 A&M 大学量子科学与工程研究所,美国德克萨斯州学院城 77843 8 德克萨斯 A&M 大学物理与天文系,美国德克萨斯州学院城 77843 9 德克萨斯 A&M 大学生物与农业工程系, Texas 77843, USA 10 Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 马德里, 西班牙 * 通讯作者: lsanchez@fis.ucm.es
摘要:电子或核自旋,例如金刚石中的无机“氮空位”中心和硅中的其他缺陷,代表了一种很有前途的量子比特(量子位),可用于量子信息处理、数据存储以及量子传感。然而,实现大量自旋作为量子比特的可扩展和空间定义的组织仍然具有挑战性。因此,开发新材料和新技术来调节自旋-自旋距离和相互作用对于保持量子相干性和实现自旋量子比特之间的相干信息交换起着重要作用。本文,我们报告称,可以通过嵌段共聚物自组装策略实现有机自由基作为电子自旋的空间定义组织。我们证明了有机发光自由基自旋的量子相干性和自旋晶格弛豫可以通过使用一个定义明确的星形嵌段共聚物库来轻松调节,该嵌段共聚物的中心含有一个共同的三[4-(对-苄基)-2,6-二氯苯基]甲基自由基核心,通过可控的开环聚合从中接枝二嵌段聚酯。对两种聚酯嵌段的不兼容性和体积比进行微调不仅可以产生一系列自组装模式(即球体、圆柱体、薄片和螺旋体),自旋在纳米尺度上发生相分离,而且可以调节自旋晶格弛豫动力学和自旋相干寿命,这些寿命在很大程度上取决于作为分子自旋的有机自由基周围的聚合物基质的长度和刚度。这种嵌段共聚物自组装策略可能提供一种普遍适用的方法,将分子自旋作为有前途的量子位集成和组织到可扩展的架构和功能设备中,以实现量子信息处理、量子计算和自旋电子学中的前沿应用。
'类似激光的“远程相干量子现象可能会在细胞骨架微管中生物学发生。本文介绍了我们称为“超赞”和“自我诱导的透明度”现象中发生的现象中发生的理论预测。考虑了在微管的空心核心和量化的电磁辐射场中被罚款的水分子的电偶极场之间的相互作用,并且将微管被理论化以扮演非线性相干光学设备的作用。超高是一种特定的量子机械排序现象,其特征时间比热相互作用的时间短得多。因此,微管中的光学信号(和计算)将不受热噪声和损失。微管网络和其他细胞骨架结构网络中的超级型光学计算可能为生物分子认知和意识的底物提供基础。
令人吃惊的是,可以从量子系统中获得的能量并不由系统的能量决定。这一违反直觉事实的物理来源是,开尔文和普朗克提出的热力学第二定律禁止从热平衡态循环提取功 [4]。因此,热状态通常被称为被动 [5]。因此,在循环(幺正)过程中可以提取的最大功由其平均能量的“非被动”部分决定。这个量定义为状态平均能量与相应被动状态之间的差,被命名为 ergotropy(来自“ergo”表示功和“trope”表示变换),类似于熵这个词 [6]。在没有相干性的系统中,非相干性 ergotropy 仅取决于能级的布居分布。然而,在能级之间存在相干性的情况下,出现了一种新的非经典贡献,即相干性 ergotropy [7]。值得注意的是,它是非负的,表明一致性可以增强系统的工作生产能力。